Computational prediction of type III secreted proteins from gram-negative bacteria

Author:

Yang Yang,Zhao Jiayuan,Morgan Robyn L,Ma Wenbo,Jiang Tao

Abstract

Abstract Background Type III secretion system (T3SS) is a specialized protein delivery system in gram-negative bacteria that injects proteins (called effectors) directly into the eukaryotic host cytosol and facilitates bacterial infection. For many plant and animal pathogens, T3SS is indispensable for disease development. Recently, T3SS has also been found in rhizobia and plays a crucial role in the nodulation process. Although a great deal of efforts have been done to understand type III secretion, the precise mechanism underlying the secretion and translocation process has not been fully understood. In particular, defined secretion and translocation signals enabling the secretion have not been identified from the type III secreted effectors (T3SEs), which makes the identification of these important virulence factors notoriously challenging. The availability of a large number of sequenced genomes for plant and animal-associated bacteria demands the development of efficient and effective prediction methods for the identification of T3SEs using bioinformatics approaches. Results We have developed a machine learning method based on the N-terminal amino acid sequences to predict novel type III effectors in the plant pathogen Pseudomonas syringae and the microsymbiont rhizobia. The extracted features used in the learning model (or classifier) include amino acid composition, secondary structure and solvent accessibility information. The method achieved a precision of over 90% on P. syringae in a cross validation study. In combination with a promoter screen for the type III specific promoters, this classifier trained on the P. syringae data was applied to predict novel T3SEs from the genomic sequences of four rhizobial strains. This application resulted in 57 candidate type III secreted proteins, 17 of which are confirmed effectors. Conclusion Our experimental results demonstrate that the machine learning method based on N-terminal amino acid sequences combined with a promoter screen could prove to be a very effective computational approach for predicting novel type III effectors in gram-negative bacteria. Our method and data are available to the public upon request.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3