Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training

Author:

Meissner Michael,Schmuker Michael,Schneider Gisbert

Abstract

Abstract Background Particle Swarm Optimization (PSO) is an established method for parameter optimization. It represents a population-based adaptive optimization technique that is influenced by several "strategy parameters". Choosing reasonable parameter values for the PSO is crucial for its convergence behavior, and depends on the optimization task. We present a method for parameter meta-optimization based on PSO and its application to neural network training. The concept of the Optimized Particle Swarm Optimization (OPSO) is to optimize the free parameters of the PSO by having swarms within a swarm. We assessed the performance of the OPSO method on a set of five artificial fitness functions and compared it to the performance of two popular PSO implementations. Results Our results indicate that PSO performance can be improved if meta-optimized parameter sets are applied. In addition, we could improve optimization speed and quality on the other PSO methods in the majority of our experiments. We applied the OPSO method to neural network training with the aim to build a quantitative model for predicting blood-brain barrier permeation of small organic molecules. On average, training time decreased by a factor of four and two in comparison to the other PSO methods, respectively. By applying the OPSO method, a prediction model showing good correlation with training-, test- and validation data was obtained. Conclusion Optimizing the free parameters of the PSO method can result in performance gain. The OPSO approach yields parameter combinations improving overall optimization performance. Its conceptual simplicity makes implementing the method a straightforward task.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 202 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3