Author:
Pattyn Filip,Hoebeeck Jasmien,Robbrecht Piet,Michels Evi,De Paepe Anne,Bottu Guy,Coornaert David,Herzog Robert,Speleman Frank,Vandesompele Jo
Abstract
Abstract
Background
DNA methylation plays an important role in development and tumorigenesis by epigenetic modification and silencing of critical genes. The development of PCR-based methylation assays on bisulphite modified DNA heralded a breakthrough in speed and sensitivity for gene methylation analysis. Despite this technological advancement, these approaches require a cumbersome gene by gene primer design and experimental validation. Bisulphite DNA modification results in sequence alterations (all unmethylated cytosines are converted into uracils) and a general sequence complexity reduction as cytosines become underrepresented. Consequently, standard BLAST sequence homology searches cannot be applied to search for specific methylation primers.
Results
To address this problem we developed methBLAST, a sequence similarity search program, based on the original BLAST algorithm but querying in silico bisulphite modified genome sequences to evaluate oligonucleotide sequence similarities. Apart from the primer specificity analysis tool, we have also developed a public database termed methPrimerDB for the storage and retrieval of validated PCR based methylation assays. The web interface allows free public access to perform methBLAST searches or database queries and to submit user based information. Database records can be searched by gene symbol, nucleotide sequence, analytical method used, Entrez Gene or methPrimerDB identifier, and submitter's name. Each record contains a link to Entrez Gene and PubMed to retrieve additional information on the gene, its genomic context and the article in which the methylation assay was described. To assure and maintain data integrity and accuracy, the database is linked to other reference databases. Currently, the database contains primer records for the most popular PCR-based methylation analysis methods to study human, mouse and rat epigenetic modifications. methPrimerDB and methBLAST are available at http://medgen.ugent.be/methprimerdb and http://medgen.ugent.be/methblast.
Conclusion
We have developed two integrated and freely available web-tools for PCR based methylation analysis. methBLAST allows in silico assessment of primer specificity in PCR based methylation assays that can be stored in the methPrimerDB database, which provides a search portal for validated methylation assays.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference21 articles.
1. Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002, 16(1):6–21. 10.1101/gad.947102
2. Feinberg AP, Ohlsson R, Henikoff S: The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006, 7(1):21–33. 10.1038/nrg1748
3. Liu ZJ, Maekawa M: Polymerase chain reaction-based methods of DNA methylation analysis. Anal Biochem 2003, 317(2):259–265. 10.1016/S0003-2697(03)00169-6
4. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG: Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999, 59(1):67–70.
5. Jones PA, Baylin SB: The fundamental role of epigenetic events in cancer. Nat Rev Genet 2002, 3(6):415–428.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献