Author:
Nagarajan Shanthi,Choo Hyunah,Cho Yong Seo,Shin Kye Jung,Oh Kwang-Seok,Lee Byung Ho,Pae Ae Nim
Abstract
Abstract
Background
Nuclear factor kappa B (NF-κB) is a chief nuclear transcription factor that controls the transcription of various genes; and its activation is tightly controlled by Inhibitor kappa B kinase (IKK). The irregular transcription of NF-κB has been linked to auto-immune disorders, cancer and other diseases. The IKK complex is composed of three units, IKKα, IKKβ, and the regulatory domain NEMO, of which IKKβ is well understood in the canonical pathway. Therefore, the inhibition of IKKβ by drugs forms the molecular basis for anti-inflammatory drug research.
Results
The ligand- and structure-based virtual screening (VS) technique has been applied to identify IKKβ inhibitors from the ChemDiv database with 0.7 million compounds. Initially, a 3D-QSAR pharmacophore model has been deployed to greatly reduce the database size. Subsequently, recursive partitioning (RP) and docking filters were used to screen the pharmacophore hits. Finally, 29 compounds were selected for IKKβ enzyme inhibition assay to identify a novel small molecule inhibitor of IKKβ protein.
Conclusions
In the present investigation, we have applied various computational models sequentially to virtually screen the ChemDiv database, and identified a small molecule that has an IC50 value of 20.3μ M. This compound is novel among the known IKKβ inhibitors. Further optimization of the hit compound can reveal a more potent anti-inflammatory agent.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献