CompMoby: Comparative MobyDick for detection of cis-regulatory motifs

Author:

Chaivorapol Christina,Melton Collin,Wei Grace,Yeh Ru-Fang,Ramalho-Santos Miguel,Blelloch Robert,Li Hao

Abstract

Abstract Background The regulation of gene expression is complex and occurs at many levels, including transcriptional and post-transcriptional, in metazoans. Transcriptional regulation is mainly determined by sequence elements within the promoter regions of genes while sequence elements within the 3' untranslated regions of mRNAs play important roles in post-transcriptional regulation such as mRNA stability and translation efficiency. Identifying cis-regulatory elements, or motifs, in multicellular eukaryotes is more difficult compared to unicellular eukaryotes due to the larger intergenic sequence space and the increased complexity in regulation. Experimental techniques for discovering functional elements are often time consuming and not easily applied on a genome level. Consequently, computational methods are advantageous for genome-wide cis-regulatory motif detection. To decrease the search space in metazoans, many algorithms use cross-species alignment, although studies have demonstrated that a large portion of the binding sites for the same trans-acting factor do not reside in alignable regions. Therefore, a computational algorithm should account for both conserved and nonconserved cis-regulatory elements in metazoans. Results We present CompMoby (Comparative MobyDick), software developed to identify cis-regulatory binding sites at both the transcriptional and post-transcriptional levels in metazoans without prior knowledge of the trans-acting factors. The CompMoby algorithm was previously shown to identify cis-regulatory binding sites in upstream regions of genes co-regulated in embryonic stem cells. In this paper, we extend the software to identify putative cis-regulatory motifs in 3' UTR sequences and verify our results using experimentally validated data sets in mouse and human. We also detail the implementation of CompMoby into a user-friendly tool that includes a web interface to a streamlined analysis. Our software allows detection of motifs in the following three categories: one, those that are alignable and conserved; two, those that are conserved but not alignable; three, those that are species specific. One of the output files from CompMoby gives the user the option to decide what category of cis-regulatory element to experimentally pursue based on their biological problem. Using experimentally validated biological datasets, we demonstrate that CompMoby is successful in detecting cis-regulatory target sites of known and novel trans-acting factors at the transcriptional and post-transcriptional levels. Conclusion CompMoby is a powerful software tool for systematic de novo discovery of evolutionarily conserved and nonconserved cis-regulatory sequences involved in transcriptional or post-transcriptional regulation in metazoans. This software is freely available to users at http://genome.ucsf.edu/compmoby/.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3