SInC: an accurate and fast error-model based simulator for SNPs, Indels and CNVs coupled with a read generator for short-read sequence data

Author:

Pattnaik Swetansu,Gupta Saurabh,Rao Arjun A,Panda Binay

Abstract

Abstract Background The rapid advancements in the field of genome sequencing are aiding our understanding on many biological systems. In the last five years, computational biologists and bioinformatics specialists have come up with newer, better and more efficient tools towards the discovery, analysis and interpretation of different genomic variants from high-throughput sequencing data. Availability of reliable simulated dataset is essential and is the first step towards testing any newly developed analytical tools for variant discovery. Although there are tools currently available that can simulate variants, none present the possibility of simulating all the three major types of variations (Single Nucleotide Polymorphisms, Insertions and Deletions and Copy Number Variations) and can generate reads taking a realistic error-model into consideration. Therefore, an efficient simulator and read generator is needed that can simulate variants taking the error rates of true biological samples into consideration. Results We report SInC (Snp, Indel and Cnv) an open-source variant simulator and read generator capable of simulating all the three common types of biological variants taking into account a distribution of base quality score from a most commonly used next-generation sequencing instrument from Illumina. SInC is capable of generating single- and paired-end reads with user-defined insert size and with high efficiency compared to the other existing tools. SInC, due to its multi-threaded capability during read generation, has a low time footprint. SInC is currently optimised to work in limited infrastructure setup and can efficiently exploit the commonly used quad-core desktop architecture to simulate short sequence reads with deep coverage for large genomes. Conclusions We have come up with a user-friendly multi-variant simulator and read-generator tools called SInC. SInC can be downloaded from http://sourceforge.net/projects/sincsimulator.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3