mGOASVM: Multi-label protein subcellular localization based on gene ontology and support vector machines

Author:

Wan Shibiao,Mak Man-Wai,Kung Sun-Yuan

Abstract

Abstract Background Although many computational methods have been developed to predict protein subcellular localization, most of the methods are limited to the prediction of single-location proteins. Multi-location proteins are either not considered or assumed not existing. However, proteins with multiple locations are particularly interesting because they may have special biological functions, which are essential to both basic research and drug discovery. Results This paper proposes an efficient multi-label predictor, namely mGOASVM, for predicting the subcellular localization of multi-location proteins. Given a protein, the accession numbers of its homologs are obtained via BLAST search. Then, the original accession number and the homologous accession numbers of the protein are used as keys to search against the Gene Ontology (GO) annotation database to obtain a set of GO terms. Given a set of training proteins, a set of T relevant GO terms is obtained by finding all of the GO terms in the GO annotation database that are relevant to the training proteins. These relevant GO terms then form the basis of a T-dimensional Euclidean space on which the GO vectors lie. A support vector machine (SVM) classifier with a new decision scheme is proposed to classify the multi-label GO vectors. The mGOASVM predictor has the following advantages: (1) it uses the frequency of occurrences of GO terms for feature representation; (2) it selects the relevant GO subspace which can substantially speed up the prediction without compromising performance; and (3) it adopts an efficient multi-label SVM classifier which significantly outperforms other predictors. Briefly, on two recently published virus and plant datasets, mGOASVM achieves an actual accuracy of 88.9% and 87.4%, respectively, which are significantly higher than those achieved by the state-of-the-art predictors such as iLoc-Virus (74.8%) and iLoc-Plant (68.1%). Conclusions mGOASVM can efficiently predict the subcellular locations of multi-label proteins. The mGOASVM predictor is available online athttp://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/mGOASVM.html.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3