Author:
Chepelev Leonid L,Riazanov Alexandre,Kouznetsov Alexandre,Low Hong Sang,Dumontier Michel,Baker Christopher JO
Abstract
Abstract
Background
The development of high-throughput experimentation has led to astronomical growth in biologically relevant lipids and lipid derivatives identified, screened, and deposited in numerous online databases. Unfortunately, efforts to annotate, classify, and analyze these chemical entities have largely remained in the hands of human curators using manual or semi-automated protocols, leaving many novel entities unclassified. Since chemical function is often closely linked to structure, accurate structure-based classification and annotation of chemical entities is imperative to understanding their functionality.
Results
As part of an exploratory study, we have investigated the utility of semantic web technologies in automated chemical classification and annotation of lipids. Our prototype framework consists of two components: an ontology and a set of federated web services that operate upon it. The formal lipid ontology we use here extends a part of the LiPrO ontology and draws on the lipid hierarchy in the LIPID MAPS database, as well as literature-derived knowledge. The federated semantic web services that operate upon this ontology are deployed within the Semantic Annotation, Discovery, and Integration (SADI) framework. Structure-based lipid classification is enacted by two core services. Firstly, a structural annotation service detects and enumerates relevant functional groups for a specified chemical structure. A second service reasons over lipid ontology class descriptions using the attributes obtained from the annotation service and identifies the appropriate lipid classification. We extend the utility of these core services by combining them with additional SADI services that retrieve associations between lipids and proteins and identify publications related to specified lipid types. We analyze the performance of SADI-enabled eicosanoid classification relative to the LIPID MAPS classification and reflect on the contribution of our integrative methodology in the context of high-throughput lipidomics.
Conclusions
Our prototype framework is capable of accurate automated classification of lipids and facile integration of lipid class information with additional data obtained with SADI web services. The potential of programming-free integration of external web services through the SADI framework offers an opportunity for development of powerful novel applications in lipidomics. We conclude that semantic web technologies can provide an accurate and versatile means of classification and annotation of lipids.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference46 articles.
1. Wenk MR: The emerging field of Lipidomics. Nat Rev Drug Discov 2005, 4: 594–610. 10.1038/nrd1776
2. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, Alcántara R, Darsow M, Guedj M, Ashburner M: ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res 2008, 36: D344-D350.
3. Nelson SJ, Schopen M, Savage AG, Schulman JL, Arluk N: The MeSH Translation Maintenance System: Structure, Interface Design, and Implementation. In Proceedings of the 11th World Congress on Medical Informatics; 2004 Sep 7–11; San Francisco, CA, USA. Edited by: Fieschi M. IOS Press; 2004:67–69.
4. Anatomical Therapeutic Chemical (ATC) Classification System[http://www.whocc.no/atc/structure_and_principles]
5. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nat Genet 2000, 25: 25–29. 10.1038/75556
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献