Author:
Chauhan Jagat S,Mishra Nitish K,Raghava Gajendra PS
Abstract
Abstract
Background
One of the major challenges in post-genomic era is to provide functional annotations for large number of proteins arising from genome sequencing projects. The function of many proteins depends on their interaction with small molecules or ligands. ATP is one such important ligand that plays critical role as a coenzyme in the functionality of many proteins. There is a need to develop method for identifying ATP interacting residues in a ATP binding proteins (ABPs), in order to understand mechanism of protein-ligands interaction.
Results
We have compared the amino acid composition of ATP interacting and non-interacting regions of proteins and observed that certain residues are preferred for interaction with ATP. This study describes few models that have been developed for identifying ATP interacting residues in a protein. All these models were trained and tested on 168 non-redundant ABPs chains. First we have developed a Support Vector Machine (SVM) based model using primary sequence of proteins and obtained maximum MCC 0.33 with accuracy of 66.25%. Secondly, another SVM based model was developed using position specific scoring matrix (PSSM) generated by PSI-BLAST. The performance of this model was improved significantly (MCC 0.5) from the previous one, where only the primary sequence of the proteins were used.
Conclusion
This study demonstrates that it is possible to predict 'ATP interacting residues' in a protein with moderate accuracy using its sequence. The evolutionary information is important for the identification of 'ATP interacting residues', as it provides more information compared to the primary sequence. This method will be useful for researchers studying ATP-binding proteins. Based on this study, a web server has been developed for predicting 'ATP interacting residues' in a protein http://www.imtech.res.in/raghava/atpint/.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献