Automating document classification for the Immune Epitope Database
-
Published:2007-07-26
Issue:1
Volume:8
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Wang Peng,Morgan Alexander A,Zhang Qing,Sette Alessandro,Peters Bjoern
Abstract
Abstract
Background
The Immune Epitope Database contains information on immune epitopes curated manually from the scientific literature. Like similar projects in other knowledge domains, significant effort is spent on identifying which articles are relevant for this purpose.
Results
We here report our experience in automating this process using Naïve Bayes classifiers trained on 20,910 abstracts classified by domain experts. Improvements on the basic classifier performance were made by a) utilizing information stored in PubMed beyond the abstract itself b) applying standard feature selection criteria and c) extracting domain specific feature patterns that e.g. identify peptides sequences. We have implemented the classifier into the curation process determining if abstracts are clearly relevant, clearly irrelevant, or if no certain classification can be made, in which case the abstracts are manually classified. Testing this classification scheme on an independent dataset, we achieve 95% sensitivity and specificity in the 51.1% of abstracts that were automatically classified.
Conclusion
By implementing text classification, we have sped up the reference selection process without sacrificing sensitivity or specificity of the human expert classification. This study provides both practical recommendations for users of text classification tools, as well as a large dataset which can serve as a benchmark for tool developers.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference34 articles.
1. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS: UniProt: the Universal Protein knowledgebase. Nucleic acids research 2004, 32(Database issue):D115–9. 10.1093/nar/gkh131 2. GeneRIF[http://www.ncbi.nlm.nih.gov/projects/GeneRIF/GeneRIFhelp.html] 3. Eppig JT, Bult CJ, Kadin JA, Richardson JE, Blake JA, Anagnostopoulos A, Baldarelli RM, Baya M, Beal JS, Bello SM, Boddy WJ, Bradt DW, Burkart DL, Butler NE, Campbell J, Cassell MA, Corbani LE, Cousins SL, Dahmen DJ, Dene H, Diehl AD, Drabkin HJ, Frazer KS, Frost P, Glass LH, Goldsmith CW, Grant PL, Lennon-Pierce M, Lewis J, Lu I, Maltais LJ, McAndrews-Hill M, McClellan L, Miers DB, Miller LA, Ni L, Ormsby JE, Qi D, Reddy TB, Reed DJ, Richards-Smith B, Shaw DR, Sinclair R, Smith CL, Szauter P, Walker MB, Walton DO, Washburn LL, Witham IT, Zhu Y: The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology. Nucleic acids research 2005, 33(Database issue):D471–5. 10.1093/nar/gki113 4. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic acids research 2004, 32(Database issue):D277–80. 10.1093/nar/gkh063 5. Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D: DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic acids research 2002, 30(1):303–305. 10.1093/nar/30.1.303
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|