Extension of Lander-Waterman theory for sequencing filtered DNA libraries
-
Published:2005-10-10
Issue:1
Volume:6
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Wendl Michael C,Barbazuk W Brad
Abstract
Abstract
Background
The degree to which conventional DNA sequencing techniques will be successful for highly repetitive genomes is unclear. Investigators are therefore considering various filtering methods to select against high-copy sequence in DNA clone libraries. The standard model for random sequencing, Lander-Waterman theory, does not account for two important issues in such libraries, discontinuities and position-based sampling biases (the so-called "edge effect"). We report an extension of the theory for analyzing such configurations.
Results
The edge effect cannot be neglected in most cases. Specifically, rates of coverage and gap reduction are appreciably lower than those for conventional libraries, as predicted by standard theory. Performance decreases as read length increases relative to island size. Although opposite of what happens in a conventional library, this apparent paradox is readily explained in terms of the edge effect. The model agrees well with prototype gene-tagging experiments for Zea mays and Sorghum bicolor. Moreover, the associated density function suggests well-defined probabilistic milestones for the number of reads necessary to capture a given fraction of the gene space. An exception for applying standard theory arises if sequence redundancy is less than about 1-fold. Here, evolution of the random quantities is independent of library gaps and edge effects. This observation effectively validates the practice of using standard theory to estimate the genic enrichment of a library based on light shotgun sequencing.
Conclusion
Coverage performance using a filtered library is significantly lower than that for an equivalent-sized conventional library, suggesting that directed methods may be more critical for the former. The proposed model should be useful for analyzing future projects.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference32 articles.
1. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, Fraser CM: Complete Genome Sequence of a Virulent Isolate of Streptococcus pneumoniae . Science 2001, 293(5529):498–506. 10.1126/science.1061217 2. International Human Genome Sequencing Consortium: Finishing the Euchromatic Sequence of the Human Genome. Nature 2004, 431(7011):931–945. 10.1038/nature03001 3. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL: Nested Retrotransposons in the Intergenic Regions of the Maize Genome. Science 1996, 274(5288):765–768. 10.1126/science.274.5288.765 4. Palmer LE, Rabinowicz PD, O'Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA, McCombie WR: Maize Genome Sequencing by Methylation Filtration. Science 2003, 302(5653):2115–2117. 10.1126/science.1091265 5. Bennetzen JL, Chandler VL, Schnable P: National Science Foundation-Sponsored Workshop Report. Maize Genome Sequencing Project. Plant Physiology 2001, 127(4):1572–1578. 10.1104/pp.127.4.1572
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|