Prediction of protein-protein binding site by using core interface residue and support vector machine

Author:

Li Nan,Sun Zhonghua,Jiang Fan

Abstract

Abstract Background The prediction of protein-protein binding site can provide structural annotation to the protein interaction data from proteomics studies. This is very important for the biological application of the protein interaction data that is increasing rapidly. Moreover, methods for predicting protein interaction sites can also provide crucial information for improving the speed and accuracy of protein docking methods. Results In this work, we describe a binding site prediction method by designing a new residue neighbour profile and by selecting only the core-interface residues for SVM training. The residue neighbour profile includes both the sequential and the spatial neighbour residues of an interface residue, which is a more complete description of the physical and chemical characteristics surrounding the interface residue. The concept of core interface is applied in selecting the interface residues for training the SVM models, which is shown to result in better discrimination between the core interface and other residues. The best SVM model trained was tested on a test set of 50 randomly selected proteins. The sensitivity, specificity, and MCC for the prediction of the core interface residues were 60.6%, 53.4%, and 0.243, respectively. Our prediction results on this test set were compared with other three binding site prediction methods and found to perform better. Furthermore, our method was tested on the 101 unbound proteins from the protein-protein interaction benchmark v2.0. The sensitivity, specificity, and MCC of this test were 57.5%, 32.5%, and 0.168, respectively. Conclusion By improving both the descriptions of the interface residues and their surrounding environment and the training strategy, better SVM models were obtained and shown to outperform previous methods. Our tests on the unbound protein structures suggest further improvement is possible.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3