Author:
Kim Ki-Yeol,Ki Dong Hyuk,Jeung Hei-Cheul,Chung Hyun Cheol,Rha Sun Young
Abstract
Abstract
Background
The information from different data sets experimented under different conditions may be inconsistent even though they are performed with the same research objectives. More than that, even when the data sets were generated from the same platform, the data agreement may be affected by the technical variation among the laboratories. In this case, it is necessary to use the combined data set after adjusting the differences between such data sets, for detecting the more reliable information.
Results
The proposed method combines data sets posterior to the discretization of data sets based on the ranks of the gene expression ratios, and the statistical method is applied to the combined data set for predictive gene selection. The efficiency of the proposed method was evaluated using five colon cancer related data sets, which were experimented using cDNA microarrays with different RNA sources, and one experiment utilized oligonucleotide arrays. NCI-60 cell lines data sets were used, which were performed with two different platforms of cDNA microarrays and Affymetrix HU6800 oligonucleotide arrays. The combined data set by the proposed method predicted the test data sets more accurately than the separated data sets did. The biological significant genes were detected from the combined data set, which were missed on the separated data sets.
Conclusion
By transforming gene expressions using ranks, the proposed method is not influenced by systematic bias among chips and normalization method. The method may be especially more useful to find predictive genes from data sets which have different scale in gene expressions.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference38 articles.
1. Hedges LV, Olkin I: Statistical Methods for Meta-Analysis. Orlando: Academic Press; 1985.
2. Rhodes DR, Miller JC, Haab BB, Furge KA: Identification of differentially expressed clusters of genes from microarray data. Bioinformatics 2002, 18: 205–206. 10.1093/bioinformatics/18.1.205
3. Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M: Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends in Genetics 2003, 19: 570–577. 10.1016/j.tig.2003.08.006
4. Lee JS, Chu IS, Mikaelyan A, Calvisi DF, Heo J, Reddy JK, Thorgeirsson SS: Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nature Genetics 2004, 36: 1306–1311. 10.1038/ng1481
5. Jiang H, Deng Y, Chen HS, Tao L, Sha Q, Chen J, Tsai CJ, Zhang S: Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics 2004, 81. 10.1186/1471-2105-5-81
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献