Empirical array quality weights in the analysis of microarray data

Author:

Ritchie Matthew E,Diyagama Dileepa,Neilson Jody,van Laar Ryan,Dobrovic Alexander,Holloway Andrew,Smyth Gordon K

Abstract

Abstract Background Assessment of array quality is an essential step in the analysis of data from microarray experiments. Once detected, less reliable arrays are typically excluded or "filtered" from further analysis to avoid misleading results. Results In this article, a graduated approach to array quality is considered based on empirical reproducibility of the gene expression measures from replicate arrays. Weights are assigned to each microarray by fitting a heteroscedastic linear model with shared array variance terms. A novel gene-by-gene update algorithm is used to efficiently estimate the array variances. The inverse variances are used as weights in the linear model analysis to identify differentially expressed genes. The method successfully assigns lower weights to less reproducible arrays from different experiments. Down-weighting the observations from suspect arrays increases the power to detect differential expression. In smaller experiments, this approach outperforms the usual method of filtering the data. The method is available in the limma software package which is implemented in the R software environment. Conclusion This method complements existing normalisation and spot quality procedures, and allows poorer quality arrays, which would otherwise be discarded, to be included in an analysis. It is applicable to microarray data from experiments with some level of replication.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3