Automatically annotating documents with normalized gene lists

Author:

Crim Jeremiah,McDonald Ryan,Pereira Fernando

Abstract

Abstract Background Document gene normalization is the problem of creating a list of unique identifiers for genes that are mentioned within a document. Automating this process has many potential applications in both information extraction and database curation systems. Here we present two separate solutions to this problem. The first is primarily based on standard pattern matching and information extraction techniques. The second and more novel solution uses a statistical classifier to recognize valid gene matches from a list of known gene synonyms. Results We compare the results of the two systems, analyze their merits and argue that the classification based system is preferable for many reasons including performance, simplicity and robustness. Our best systems attain a balanced precision and recall in the range of 74%–92%, depending on the organism.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference15 articles.

1. Kazama J, Makino T, Ohta Y, Tsujii J: Tuning Support Vector Machines for Biomedical Named Entity Recognition. Proceedings of Natural Language Processing in the Biomedical Domain, ACL 2002.

2. McDonald R, Pereira F: Identifying gene mentions in text using conditional random fields. BMC Bioinformatics 2005, 6(Suppl 1):S6. 10.1186/1471-2105-6-S1-S6

3. Narayanaswamy M, Ravikumar KE, Vijay-Shanker K: A Biological Named Entity Recognizer. Proceedings of Pacific Symposium on Biocomputing 2003.

4. A critical assessment of text mining methods in molecular biology workshop2004. [http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04]

5. Morgan AA, Hirschman L, Colosimo M, Yeh A, Colombe J: Gene Name Identification and Normalization Using a Model Organism Database. To appear in Journal of Biomedical Informatics 2004.

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3