Author:
Tanabe Lorraine,Xie Natalie,Thom Lynne H,Matten Wayne,Wilbur W John
Abstract
Abstract
Background
Named entity recognition (NER) is an important first step for text mining the biomedical literature. Evaluating the performance of biomedical NER systems is impossible without a standardized test corpus. The annotation of such a corpus for gene/protein name NER is a difficult process due to the complexity of gene/protein names. We describe the construction and annotation of GENETAG, a corpus of 20K MEDLINE® sentences for gene/protein NER. 15K GENETAG sentences were used for the BioCreAtIvE Task 1A Competition.
Results
To ensure heterogeneity of the corpus, MEDLINE sentences were first scored for term similarity to documents with known gene names, and 10K high- and 10K low-scoring sentences were chosen at random. The original 20K sentences were run through a gene/protein name tagger, and the results were modified manually to reflect a wide definition of gene/protein names subject to a specificity constraint, a rule that required the tagged entities to refer to specific entities. Each sentence in GENETAG was annotated with acceptable alternatives to the gene/protein names it contained, allowing for partial matching with semantic constraints. Semantic constraints are rules requiring the tagged entity to contain its true meaning in the sentence context. Application of these constraints results in a more meaningful measure of the performance of an NER system than unrestricted partial matching.
Conclusion
The annotation of GENETAG required intricate manual judgments by annotators which hindered tagging consistency. The data were pre-segmented into words, to provide indices supporting comparison of system responses to the "gold standard". However, character-based indices would have been more robust than word-based indices. GENETAG Train, Test and Round1 data and ancillary programs are freely available at ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENETAG.tar.gz. A newer version of GENETAG-05, will be released later this year.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference10 articles.
1. Kim J-D, Ohta T, Tateisi Y, Tsujii J: GENIA corpus – a semantically annotated corpus for bio-textmining. Bioinformatics 2003, (Suppl 1):i180–2. 10.1093/bioinformatics/btg1023
2. MUC-7:Proceedings of the Seventh Message Understanding Conference (MUC-7): Defense Advanced Research Projects Agency. 1998. [http://www.itl.nist.gov/iaui/894.02/related_projects/muc/]
3. Hatzivassiloglou V, Duboue PA, Rzhetsky A: Disambiguating proteins, genes, and RNA in text: a machine learning approach. Bioinformatics 2001, (Suppl 1):S97–106.
4. Tanabe L, Wilbur WJ: Tagging gene and protein names in biomedical text. Bioinformatics 2002, 18: 1124–32. 10.1093/bioinformatics/18.8.1124
5. Valencia A, Blaschke C, Hirschman L, Yeh A, Morgan A, Colosimo M, Colombe M: A critical assessment of text mining methods in molecular biology.2004. [http://www.pdg.cnb.uam.es/BioLINK/workshop_BioCreative_04/handout/index.html]
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献