A three-state prediction of single point mutations on protein stability changes

Author:

Capriotti Emidio,Fariselli Piero,Rossi Ivan,Casadio Rita

Abstract

Abstract Background A basic question of protein structural studies is to which extent mutations affect the stability. This question may be addressed starting from sequence and/or from structure. In proteomics and genomics studies prediction of protein stability free energy change (ΔΔG) upon single point mutation may also help the annotation process. The experimental ΔΔG values are affected by uncertainty as measured by standard deviations. Most of the ΔΔG values are nearly zero (about 32% of the ΔΔG data set ranges from −0.5 to 0.5 kcal/mole) and both the value and sign of ΔΔG may be either positive or negative for the same mutation blurring the relationship among mutations and expected ΔΔG value. In order to overcome this problem we describe a new predictor that discriminates between 3 mutation classes: destabilizing mutations (ΔΔG<−1.0 kcal/mol), stabilizing mutations (ΔΔG>1.0 kcal/mole) and neutral mutations (−1.0≤ΔΔG≤1.0 kcal/mole). Results In this paper a support vector machine starting from the protein sequence or structure discriminates between stabilizing, destabilizing and neutral mutations. We rank all the possible substitutions according to a three state classification system and show that the overall accuracy of our predictor is as high as 56% when performed starting from sequence information and 61% when the protein structure is available, with a mean value correlation coefficient of 0.27 and 0.35, respectively. These values are about 20 points per cent higher than those of a random predictor. Conclusions Our method improves the quality of the prediction of the free energy change due to single point protein mutations by adopting a hypothesis of thermodynamic reversibility of the existing experimental data. By this we both recast the thermodynamic symmetry of the problem and balance the distribution of the available experimental measurements of free energy changes. This eliminates possible overestimations of the previously described methods trained on an unbalanced data set comprising a number of destabilizing mutations higher than stabilizing ones.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3