Time-course analysis of genome-wide gene expression data from hormone-responsive human breast cancer cells

Author:

Mutarelli Margherita,Cicatiello Luigi,Ferraro Lorenzo,Grober Olì MV,Ravo Maria,Facchiano Angelo M,Angelini Claudia,Weisz Alessandro

Abstract

Abstract Background Microarray experiments enable simultaneous measurement of the expression levels of virtually all transcripts present in cells, thereby providing a ‘molecular picture’ of the cell state. On the other hand, the genomic responses to a pharmacological or hormonal stimulus are dynamic molecular processes, where time influences gene activity and expression. The potential use of the statistical analysis of microarray data in time series has not been fully exploited so far, due to the fact that only few methods are available which take into proper account temporal relationships between samples. Results We compared here four different methods to analyze data derived from a time course mRNA expression profiling experiment which consisted in the study of the effects of estrogen on hormone-responsive human breast cancer cells. Gene expression was monitored with the innovative Illumina BeadArray platform, which includes an average of 30-40 replicates for each probe sequence randomly distributed on the chip surface. We present and discuss the results obtained by applying to these datasets different statistical methods for serial gene expression analysis. The influence of the normalization algorithm applied on data and of different parameter or threshold choices for the selection of differentially expressed transcripts has also been evaluated. In most cases, the selection was found fairly robust with respect to changes in parameters and type of normalization. We then identified which genes showed an expression profile significantly affected by the hormonal treatment over time. The final list of differentially expressed genes underwent cluster analysis of functional type, to identify groups of genes with similar regulation dynamics. Conclusions Several methods for processing time series gene expression data are presented, including evaluation of benefits and drawbacks of the different methods applied. The resulting protocol for data analysis was applied to characterization of the gene expression changes induced by estrogen in human breast cancer ZR-75.1 cells over an entire cell cycle.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference37 articles.

1. Weisz A: Estrogen regulated genes. In Handbook of Experimental Pharmacology, Volume 135/I: Estrogens and Antiestrogens. Edited by: Oettel M, Schillinger E. Berlin-Heidelberg-New York: Springer Verlag; 1999:127–151.

2. Weisz A: New insights on estrogen action from gene expression profiling. In Signal Transduction and Neoplastic Transformation in Endocrine Systems: Molecular mechanisms and clinical aspects, Volume 211. Roma: Atti dei Convegni Lincei, Bardi; 2005:143–153.

3. Weisz A, Addeo R, Altucci L, Battista T, Boccia V, Cancemi M, Cicatiello L, Germano D, Mancini A, Pacilio C, Bresciani F: Molecular mechanisms for estrogen control of cell cycle progression during G1. In Sex Steroid Hormone Action. Edited by: Edited by Kuramoto H, Gurpide E, Tokyo. Churchill Livingstone Japan; 1996:1–16.

4. Cicatiello L, Scafoglio C, Altucci L, Cancemi M, Natoli G, Facchiano A, Iazzetti G, Calogero R, Biglia N, De Bortoli M, Sfiligol C, Sismondi P, Bresciani F, Weisz A: A genomic view of estrogen actions in human breast cancer cells by expression profiling of the hormone-responsive transcriptome. J Mol Endocrinol 2004, 32: 719–775.

5. Scafoglio C, Ambrosino C, Cicatiello L, Altucci L, Ardovino M, Bontempo P, Medici N, Molinari AM, Nebbioso A, Facchiano A, Calogero R, Elkon R, Menini N, Ponzone R, Biglia N, Sismondi P, De Bortoli M, Weisz A: Comparative gene expression profiling reveals partially overlapping but distinct genomic actions of different antiestrogens in human breast cancer cells. J. Cell. Biochem. 2006, 98: 1163–1184.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3