Construction and analysis of the protein-protein interaction networks for schizophrenia, bipolar disorder, and major depression

Author:

Lee Sheng-An,Tsao Theresa Tsun-Hui,Yang Ko-Chun,Lin Han,Kuo Yu-Lun,Hsu Chien-Hsiang,Lee Wen-Kuei,Huang Kuo-Chuan,Kao Cheng-Yan

Abstract

Abstract Background Schizophrenia, bipolar disorder, and major depression are devastating mental diseases, each with distinctive yet overlapping epidemiologic characteristics. Microarray and proteomics data have revealed genes which expressed abnormally in patients. Several single nucleotide polymorphisms (SNPs) and mutations are associated with one or more of the three diseases. Nevertheless, there are few studies on the interactions among the disease-associated genes and proteins. Results This study, for the first time, incorporated microarray and protein-protein interaction (PPI) databases to construct the PPI network of abnormally expressed genes in postmortem brain samples of schizophrenia, bipolar disorder, and major depression patients. The samples were collected from Brodmann area (BA) 10 of the prefrontal cortex. Abnormally expressed disease genes were selected by t-tests comparing the disease and control samples. These genes were involved in housekeeping functions (e.g. translation, transcription, energy conversion, and metabolism), in brain specific functions (e.g. signal transduction, neuron cell differentiation, and cytoskeleton), or in stress responses (e.g. heat shocks and biotic stress). The diseases were interconnected through several “switchboard”-like nodes in the PPI network or shared abnormally expressed genes. A “core” functional module which consisted of a tightly knitted sub-network of clique-5 and -4s was also observed. These cliques were formed by 12 genes highly expressed in both disease and control samples. Conclusions Several previously unidentified disease marker genes and drug targets, such as SBNO2 (schizophrenia), SEC24C (bipolar disorder), and SRRT (major depression), were identified based on statistical and topological analyses of the PPI network. The shared or interconnecting marker genes may explain the shared symptoms of the studied diseases. Furthermore, the “switchboard” genes, such as APP, UBC, and YWHAZ, are proposed as potential targets for developing new treatments due to their functional and topological significance.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3