Author:
Du Tie Hua,Puah Wee Choo,Wasser Martin
Abstract
Abstract
Background
Cell divisions play critical roles in disease and development. The analysis of cell division phenotypes in high content image-based screening and time-lapse microscopy relies on automated nuclear segmentation and classification of cell cycle phases. Automated identification of the cell cycle phase helps biologists quantify the effect of genetic perturbations and drug treatments. Most existing studies have dealt with 2D images of cultured cells. Few, if any, studies have addressed the problem of cell cycle classification in 3D image stacks of intact tissues.
Results
We developed a workflow for the automated cell cycle phase classification in 3D time-series image datasets of live Drosophila embryos expressing the chromatin marker histone-GFP. Upon image acquisition by laser scanning confocal microscopy and 3D nuclear segmentation, we extracted 3D intensity, shape and texture features from interphase nuclei and mitotic chromosomes. We trained different classifiers, including support vector machines (SVM) and neural networks, to distinguish between 5 cell cycles phases (Interphase and 4 mitotic phases) and achieved over 90% accuracy. As the different phases occur at different frequencies (58% of samples correspond to interphase), we devised a strategy to improve the identification of classes with low representation. To investigate which features are required for accurate classification, we performed feature reduction and selection. We were able to reduce the feature set from 42 to 9 without affecting classifier performance. We observed a dramatic decrease of classification performance when the training and testing samples were derived from two different developmental stages, the nuclear divisions of the syncytial blastoderm and the cell divisions during gastrulation. Combining samples from both developmental stages produced a more robust and accurate classifier.
Conclusions
Our study demonstrates that automated cell cycle phase classification, besides 2D images of cultured cells, can also be applied to 3D images of live tissues. We could reduce the initial 3D feature set from 42 to 9 without compromising performance. Robust classifiers of intact animals need to be trained with samples from different developmental stages and cell types. Cell cycle classification in live animals can be used for automated phenotyping and to improve the performance of automated cell tracking.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference23 articles.
1. Chen X, Zhou X, Wong STC: Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy. IEEE Trans. Biomed. Eng. 2006, 53: 762–766. 10.1109/TBME.2006.870201
2. Neumann B, Walter T, Hériché JK, Bulkescher J, Erfle H, Conrad C, Rogers P, Poser I, Held M, Liebel U, Cetin C, Sieckmann F, Pau G, Kabbe R, Wünsche A, Satagopam V, Schmitz MHA, Chapuis C, Gerlich DW, Schneider R, Eils R, Huber W, Peters JM, Hyman AA, Durbin R, Pepperkok R, Ellenberg J: Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 2010, 464: 721–727. 10.1038/nature08869
3. Lu J, Liu T, Yang J: Automated cell phase classification for zebrafish fluorescence microscope images. 20th International Conference on Pattern Recognition 2010, 2584–2587.
4. Zhou X, Li F, Yan J, Wong STC: A novel cell segmentation method and cell phase identification using Markov model. IEEE Trans InfTechnol Biomed 2009, 13: 152–157.
5. Wang M, Zhou X, Li F, Huckins J, King RW, Wong STC: Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy. Bioinformatics 2008, 24: 94–101. 10.1093/bioinformatics/btm530
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献