Author:
Higgs Brandon W,Weller Jennifer,Solka Jeffrey L
Abstract
Abstract
Background
Accurate methods for extraction of meaningful patterns in high dimensional data have become increasingly important with the recent generation of data types containing measurements across thousands of variables. Principal components analysis (PCA) is a linear dimensionality reduction (DR) method that is unsupervised in that it relies only on the data; projections are calculated in Euclidean or a similar linear space and do not use tuning parameters for optimizing the fit to the data. However, relationships within sets of nonlinear data types, such as biological networks or images, are frequently mis-rendered into a low dimensional space by linear methods. Nonlinear methods, in contrast, attempt to model important aspects of the underlying data structure, often requiring parameter(s) fitting to the data type of interest. In many cases, the optimal parameter values vary when different classification algorithms are applied on the same rendered subspace, making the results of such methods highly dependent upon the type of classifier implemented.
Results
We present the results of applying the spectral method of Lafon, a nonlinear DR method based on the weighted graph Laplacian, that minimizes the requirements for such parameter optimization for two biological data types. We demonstrate that it is successful in determining implicit ordering of brain slice image data and in classifying separate species in microarray data, as compared to two conventional linear methods and three nonlinear methods (one of which is an alternative spectral method). This spectral implementation is shown to provide more meaningful information, by preserving important relationships, than the methods of DR presented for comparison.
Tuning parameter fitting is simple and is a general, rather than data type or experiment specific approach, for the two datasets analyzed here. Tuning parameter optimization is minimized in the DR step to each subsequent classification method, enabling the possibility of valid cross-experiment comparisons.
Conclusion
Results from the spectral method presented here exhibit the desirable properties of preserving meaningful nonlinear relationships in lower dimensional space and requiring minimal parameter fitting, providing a useful algorithm for purposes of visualization and classification across diverse datasets, a common challenge in systems biology.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference31 articles.
1. Kittler JV, Young PC: A new approach to feature selection based on the Karhunen-Loeve expansion. Pattern Recognition 1973, 5: 335–352. 10.1016/0031-3203(73)90025-3
2. Cox TF, Cox MAA: Multidimensional Scaling. Second edition. London: Chapman and Hall; 1994.
3. Lafon S: Diffusion Maps and Geometric Harmonics. PhD thesis. Yale University, Mathematics Department; 2004.
4. Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW: Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion Maps. PNAS 2005, 102(21):7426–7431. 10.1073/pnas.0500334102
5. Higgs B: Deriving Meaningful Structure from Spectral Embedding. PhD thesis. George Mason University, School of Computational Sciences; 2005.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献