Author:
Pierleoni Andrea,Martelli Pier Luigi,Casadio Rita
Abstract
Abstract
Background
Several eukaryotic proteins associated to the extracellular leaflet of the plasma membrane carry a Glycosylphosphatidylinositol (GPI) anchor, which is linked to the C-terminal residue after a proteolytic cleavage occurring at the so called ω-site. Computational methods were developed to discriminate proteins that undergo this post-translational modification starting from their aminoacidic sequences. However more accurate methods are needed for a reliable annotation of whole proteomes.
Results
Here we present PredGPI, a prediction method that, by coupling a Hidden Markov Model (HMM) and a Support Vector Machine (SVM), is able to efficiently predict both the presence of the GPI-anchor and the position of the ω-site. PredGPI is trained on a non-redundant dataset of experimentally characterized GPI-anchored proteins whose annotation was carefully checked in the literature.
Conclusion
PredGPI outperforms all the other previously described methods and is able to correctly replicate the results of previously published high-throughput experiments. PredGPI reaches a lower rate of false positive predictions with respect to other available methods and it is therefore a costless, rapid and accurate method for screening whole proteomes.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
533 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献