Author:
Choo Khar Heng,Tong Joo Chuan,Ranganathan Shoba
Abstract
Abstract
Background
Type I signal peptidases (SPases) are essential membrane-bound serine proteases responsible for the cleavage of signal peptides from proteins that are translocated across biological membranes. The crystal structure of SPase in complex with signal peptide has not been solved and their substrate-binding site and binding specificities remain poorly understood. We report here a structure-based model for Escherichia coli DsbA 13–25 in complex with its endogenous type I SPase.
Results
The bound structure of DsbA 13–25 in complex with its endogenous type I SPase reported here reveals the existence of an extended conformation of the precursor protein with a pronounced backbone twist between positions P3 and P1'. Residues 13–25 of DsbA occupy, and thereby define 13 subsites, S7 to S6', within the SPase substrate-binding site. The newly defined subsites, S1' to S6' play critical roles in the substrate specificities of E. coli SPase. Our results are in accord with available experimental data.
Conclusion
Collectively, the results of this study provide interesting new insights into the binding conformation of signal peptides and the substrate-binding site of E. coli SPase. This is the first report on the modeling of a precursor protein into the entire SPase binding site. Together with the conserved precursor protein binding conformation, the existing and newly identified substrate binding sites readily explain SPase cleavage fidelity, consistent with existing biochemical results and solution structures of inhibitors in complex with E. coli SPase. Our data suggests that both signal and mature moiety sequences play important roles and should be considered in the development of predictive tools.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference35 articles.
1. Mullins C, Meyer H-A, Hartmann E, Green N, Fang H: Structurally related SPC1p and SPC2p of yeast signal peptidase complex and functionally distinct. J Biol Chem 1996, 271: 29094–29099. 10.1074/jbc.271.46.29094
2. von Heijne G: Signal Peptidases. Molecular Biology Intelligence Unit. Austin: RG Landes Company; 1994.
3. Date T: Demonstration by a novel genetic technique that leader peptidase is an essential enzyme in Escherichia coli . J Bacteriol 1983, 154: 76–83.
4. Klug G, Jager A, Heck C, Rauhut R: Identification, sequence analysis, and expression of the lepB gene for a leader peptidase in Rhodobacter capsulatus . Mol Gen Genet 1997, 253: 666–673. 10.1007/s004380050370
5. Black MT, Bruton G: Inhibitors of bacterial signal peptidase. Curr Pharm Des 1998, 4: 133–154.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献