Author:
Choi Hyungwon,Shen Ronglai,Chinnaiyan Arul M,Ghosh Debashis
Abstract
Abstract
Background
With the explosion in data generated using microarray technology by different investigators working on similar experiments, it is of interest to combine results across multiple studies.
Results
In this article, we describe a general probabilistic framework for combining high-throughput genomic data from several related microarray experiments using mixture models. A key feature of the model is the use of latent variables that represent quantities that can be combined across diverse platforms. We consider two methods for estimation of an index termed the probability of expression (POE). The first, reported in previous work by the authors, involves Markov Chain Monte Carlo (MCMC) techniques. The second method is a faster algorithm based on the expectation-maximization (EM) algorithm. The methods are illustrated with application to a meta-analysis of datasets for metastatic cancer.
Conclusion
The statistical methods described in the paper are available as an R package, metaArray 1.8.1, which is at Bioconductor, whose URL is http://www.bioconductor.org/.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference36 articles.
1. Hedges L, Olkin I: Statistical methods for meta-analysis. New York: Academic Press; 1985.
2. Normand SLT: Meta-analysis: Formulating, Evaluating, Combining, and Reporting. Statistics in Medicine 1999, 18: 321–359. 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P
3. Rhodes D, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM: Meta-Analysis of Microarrays: Interstudy Validation of Gene Expression Profiles Reveals Pathway Dysregulation in Prostate Cancer. Cancer Research 2002, 62: 4427–33.
4. Storey JD: A direct approach to false discovery rates. J R Stat Soc B 2002, 64: 479–98. 10.1111/1467-9868.00346
5. Choi JK, Yu U, Kim S, Yoo OJ: Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 2003, 19: 184–190. 10.1093/bioinformatics/btg1010
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献