A replica exchange Monte Carlo algorithm for protein folding in the HP model

Author:

Thachuk Chris,Shmygelska Alena,Hoos Holger H

Abstract

Abstract Background The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be N P MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFneVtcqqGqbauaaa@3961@ -hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC) method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP) lattice models. Results We demonstrate that REMC is highly effective for solving instances of the square (2D) and cubic (3D) HP protein folding problem. When using the pull move neighbourhood, REMC outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we show that this new algorithm provides a larger ensemble of ground-state structures than the existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds significantly better conformations on long biological sequences and sequences with a provably unique ground-state structure, which is believed to be a characteristic of real proteins. We also present evidence that our REMC algorithm can fold sequences which exhibit significant interaction between termini in the hydrophobic core relatively easily. Conclusion We demonstrate that REMC utilizing the pull move neighbourhood significantly outperforms current state-of-the-art methods for protein structure prediction in the HP model on 2D and 3D lattices. This is particularly noteworthy, since so far, the state-of-the-art methods for 2D and 3D HP protein folding – in particular, the pruned-enriched Rosenbluth method (PERM) and, to some extent, Ant Colony Optimisation (ACO) – were based on chain growth mechanisms. To the best of our knowledge, this is the first application of REMC to HP protein folding on the cubic lattice, and the first extension of the pull move neighbourhood to a 3D lattice.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference55 articles.

1. Berger B, Leighton T: Protein folding in the hydrophobic-hydrophilic (HP) is NP-complete. Proceedings of the second annual international conference on Computational molecular biology. 1998, 5 (1): 27-40.

2. Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis M: On the complexity of protein folding. Proceedings of the second annual international conference on Computational molecular biology. 1998, 61-62.

3. Hart W, Istrail S: Robust proofs of NP-hardness for protein folding: general lattices and energy potentials. Journal of Computational Biology. 1997, 4: 1-22.

4. Grassberger P: Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 1997, 56 (3): 3682-3693.

5. Gront D, Kolinski A, Skolnick J: A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics. The Journal of Chemical Physics. 2001, 115 (3): 1569-1574.

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3