Author:
Thachuk Chris,Shmygelska Alena,Hoos Holger H
Abstract
Abstract
Background
The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be
N
P
MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaat0uy0HwzTfgDPnwy1egaryqtHrhAL1wy0L2yHvdaiqaacqWFneVtcqqGqbauaaa@3961@
-hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC) method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP) lattice models.
Results
We demonstrate that REMC is highly effective for solving instances of the square (2D) and cubic (3D) HP protein folding problem. When using the pull move neighbourhood, REMC outperforms current state-of-the-art algorithms for most benchmark instances. Additionally, we show that this new algorithm provides a larger ensemble of ground-state structures than the existing state-of-the-art methods. Furthermore, it scales well with sequence length, and it finds significantly better conformations on long biological sequences and sequences with a provably unique ground-state structure, which is believed to be a characteristic of real proteins. We also present evidence that our REMC algorithm can fold sequences which exhibit significant interaction between termini in the hydrophobic core relatively easily.
Conclusion
We demonstrate that REMC utilizing the pull move neighbourhood significantly outperforms current state-of-the-art methods for protein structure prediction in the HP model on 2D and 3D lattices. This is particularly noteworthy, since so far, the state-of-the-art methods for 2D and 3D HP protein folding – in particular, the pruned-enriched Rosenbluth method (PERM) and, to some extent, Ant Colony Optimisation (ACO) – were based on chain growth mechanisms. To the best of our knowledge, this is the first application of REMC to HP protein folding on the cubic lattice, and the first extension of the pull move neighbourhood to a 3D lattice.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference55 articles.
1. Berger B, Leighton T: Protein folding in the hydrophobic-hydrophilic (HP) is NP-complete. Proceedings of the second annual international conference on Computational molecular biology. 1998, 5 (1): 27-40.
2. Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis M: On the complexity of protein folding. Proceedings of the second annual international conference on Computational molecular biology. 1998, 61-62.
3. Hart W, Istrail S: Robust proofs of NP-hardness for protein folding: general lattices and energy potentials. Journal of Computational Biology. 1997, 4: 1-22.
4. Grassberger P: Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000. Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 1997, 56 (3): 3682-3693.
5. Gront D, Kolinski A, Skolnick J: A new combination of replica exchange Monte Carlo and histogram analysis for protein folding and thermodynamics. The Journal of Chemical Physics. 2001, 115 (3): 1569-1574.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献