The empirical codon mutation matrix as a communication channel

Author:

Nigatu Dawit,Mahmood Attiya,Henkel Werner

Abstract

Abstract Background A number of evolutionary models have been widely used for sequence alignment, phylogenetic tree reconstruction, and database searches. These models focus on how sets of independent substitutions between amino acids or codons derive one protein sequence from its ancestral sequence during evolution. In this paper, we regard the Empirical Codon Mutation (ECM) Matrix as a communication channel and compute the corresponding channel capacity. Results The channel capacity of 4.1875 bit, which is needed to preserve the information determined by the amino acid distribution, is obtained with an exponential factor of 0.26 applied to the ECM matrix. Additionally, we have obtained the optimum capacity achieving codon distribution. Compared to the biological distribution, there is an obvious difference, however, the distribution among synonymous codons is preserved. More importantly, the results show that the biological codon distribution allows for a “transmission” at a rate very close to the capacity. Conclusion We computed an exponential factor for the ECM matrix that would still allow for preserving the genetic information given the redundancy that is present in the codon-to-amino acid mapping. This gives an insight how such a mutation matrix relates to the preservation of a species in an information-theoretic sense.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. How Well Can We Infer Selection Benefits and Mutation Rates from Allele Frequencies?;Entropy;2023-04-04

2. The DNA from a Coding Perspective;Information- and Communication Theory in Molecular Biology;2017-08-02

3. Introduction;Information- and Communication Theory in Molecular Biology;2017-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3