Abstract
Abstract
Background
Recent studies have indicated a strong correlation between endoplasmic reticulum (ER) stress and myopia and that eyedrops containing the ER stress inducer tunicamycin (Tm) can induce myopic changes in C57BL/6 J mice. Therefore, this study aimed to create a new myopia model using Tm eyedrops and to explore the mechanism of ER stress-mediated myopia development.
Methods
Three-week-old C57BL/6 J mice were treated with different concentrations (0, 25, 50, and 100 μg/mL) and/or number of applications (zero, one, three, and seven) of Tm eyedrops. Refraction and axial length (AL) were measured before and one week after Tm treatment. Scleral collagen alterations were evaluated under polarised light after picrosirius red staining. ER stress-related indicators, such as the expression of collagen I and cleaved collagen were detected using Western blotting.
Results
Compared with the control group, mice administered eyedrops with 50 μg/mL Tm only once showed the greatest myopic shifts in refraction and AL elongation and reduced scleral expression of collagen I. Picrosirius red staining showed a lower percentage of bundled collagen in the Tm group. Expression of ER-stress indicators increased in the Tm groups. Furthermore, optimised administration of Tm induced matrix metalloproteinase-2 (MMP2) expression in the sclera, which plays a major role in collagen degradation.
Conclusions
We have demonstrated that ER stress in the sclera is involved in myopia progression. Tm eyedrops induced myopic changes, loosening of the scleral collagen and decreased expression of collagen I. This process may be associated with ER stress in the sclera, which upregulates the expression of MMP2 leading to collagen degradation.
Funder
Ministry of Education, Culture, Sports, Science and Technology of Japan
A grant for myopia research from Tsubota Laboratory Inc.
China Scholarship Council
AMED
Publisher
Springer Science and Business Media LLC
Subject
Ophthalmology,Health Professions (miscellaneous)
Reference43 articles.
1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.
2. Jiang X, Kurihara T, Kunimi H, Miyauchi M, Ikeda SI, Mori K, et al. A highly efficient murine model of experimental myopia. Sci Rep. 2018;8(1):2026.
3. Xiao H, Fan ZY, Tian XD, Xu YC. Comparison of form-deprived myopia and lens-induced myopia in guinea pigs. Int J Ophthalmol. 2014;7(2):245–50.
4. Zhou X, Zhang S, Zhang G, Chen Y, Lei Y, Xiang J, et al. Increased choroidal blood perfusion can inhibit form deprivation myopia in guinea pigs. Invest Ophthalmol Vis Sci. 2020;61(13):25.
5. Zhu C, Chen Q, Yuan Y, Li M, Ke B. Endoplasmic reticulum stress regulates scleral remodeling in a guinea pig model of form-deprivation myopia. J Ophthalmol. 2020;2020:3264525.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Animal modeling for myopia;Advances in Ophthalmology Practice and Research;2024-11