Assessing abnormal corneal endothelial cells from in vivo confocal microscopy images using a fully automated deep learning system

Author:

Qu Jinghao,Qin Xiaoran,Peng Rongmei,Xiao Gege,Gu Shaofeng,Wang Haikun,Hong JingORCID

Abstract

Abstract Background The goal of this study is to develop a fully automated segmentation and morphometric parameter estimation system for assessing abnormal corneal endothelial cells (CECs) from LASER in vivo confocal microscopy (IVCM) images. Methods First, we developed a fully automated deep learning system for assessing abnormal CECs using a previous development set composed of normal images and a newly constructed development set composed of abnormal images. Second, two testing sets, one with 169 normal images and the other with 211 abnormal images, were used to evaluate the clinical validity and effectiveness of the proposed system on LASER IVCM images with different corneal endothelial conditions, particularly on abnormal images. Third, the automatically calculated endothelial cell density (ECD) and the manually calculated ECD were compared using both the previous and proposed systems. Results The automated morphometric parameter estimations of the average number of cells, ECD, coefficient of variation in cell area and percentage of hexagonal cells were 257 cells, 2648 ± 511 cells/mm2, 32.18 ± 6.70% and 56.23 ± 8.69% for the normal CEC testing set and 83 cells, 1450 ± 656 cells/mm2, 34.87 ± 10.53% and 42.55 ± 20.64% for the abnormal CEC testing set. Furthermore, for the abnormal CEC testing set, Pearson’s correlation coefficient between the automatically and manually calculated ECDs was 0.9447; the 95% limits of agreement between the manually and automatically calculated ECDs were between 329.0 and − 579.5 (concordance correlation coefficient = 0.93). Conclusions This is the first report to count and analyze the morphology of abnormal CECs in LASER IVCM images using deep learning. Deep learning produces highly objective evaluation indicators for LASER IVCM corneal endothelium images and greatly expands the range of applications for LASER IVCM.

Funder

National Natural Science Foundation of China

China National Key Technologies Research and Development Program

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,Health Professions (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3