Retinal image quality with multifocal, EDoF, and accommodative intraocular lenses as studied by pyramidal aberrometry

Author:

Alio Jorge L.ORCID,D’Oria Francesco,Toto Francesca,Balgos Joan,Palazon Antonio,Versaci Francesco,Alio del Barrio Jorge L.

Abstract

Abstract Background To study and compare the clinical optical image quality following implantation with different premium IOLs by analysing the point spread function (PSF) Strehl ratio using a pyramidal wavefront sensor (PWS)-based aberrometer. Methods This study included 194 eyes implanted with: (a) 19 AcrySof SA60AT (control group); (b) 19 Miniwell; (c) 24 LENTIS Mplus LS-313 MF30; d) 33 LENTIS Mplus LS-313 MF15; (e) 17 AkkoLens Lumina; (f) 31 AT LISA Tri 839MP; (g) 20 Precizon Presbyopic; (h) 20 AcrySof IQ PanOptix; (i) 11 Tecnis Eyhance. Main outcome measures were PSF Strehl ratio, PSF Strehl ratio excluding second-order aberrations (PSFw2), total root mean square (RMS), low-order aberration (LOA) and high-order aberration (HOA) RMS measured by PWS aberrometer. Results AT LISA Tri had the highest PSFw2 Strehl ratio at both 3.0- and 4.0-mm pupil size (0.52 ± 0.14 and 0.31 ± 0.10; P < 0.05), followed by SA60AT (0.41 ± 0.11 and 0.28 ± 0.07) and PanOptix (0.4 ± 0.07 and 0.26 ± 0.04). AT LISA Tri was found to provide a significantly better retinal image quality than PanOptix at both 3.0 mm (P < 0.0001) and 4.0 mm (P = 0.004). Mplus MF15 was found to be significantly better than Mplus MF30 at both 3.0 mm (P < 0.0001) and 4.0 mm (P = 0.002). Total RMS, LOA RMS, HOA RMS, PSF Strehl ratio and PSFw2 varied significantly between the studied groups (P < 0.001). Conclusions Far distance clinical image quality parameters measured by PWS aberrometer differed significantly according to the technology of the implanted lens. AT LISA Tri, SA60AT and PanOptix showed the highest values of far distance retinal image quality, while the lowest PSFw2 Strehl ratios were displayed by Miniwell, Mplus MF30 and Precizon Presbyopic.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3