Insights into atypical segmental layer thicknesses and phase retardation in thick corneas using ultrahigh-resolution polarization-sensitive optical coherence tomography

Author:

Patil Rahul P.,Shetty Rohit,Khamar Pooja,Patel Yash G.,Narasimhan Raghav R.,Bhatkal Anushree A.,Hitzenberger Christopher K.,Pircher Michael,Nuijts Rudy M. M. R.,Sinha Roy AbhijitORCID

Abstract

Abstract Background Accurately assessing corneal structural status is challenging when thickness deviates from the average. Polarization-sensitive optical coherence tomography (PS-OCT) measures tissue-specific polarization changes, providing additional contrast for accurate segmentations and aids in phase retardation (PR) measurements. Previous studies have shown PR's effectiveness in identifying sub-clinical keratoconus (KC) in asymmetric cases. Thus, this study aims to assess PR distribution in thick corneas with and without KC. Methods In this retrospective and cross-sectional study, 45 thick corneas from 30 Asian-Indian subjects, categorized into healthy (n = 26) and KC (n = 19) groups were analyzed. All eyes underwent standard clinical evaluations, tomographic assessments, and corneal biomechanics measurements. PR and individual layer thicknesses were measured using custom-designed ultrahigh-resolution PS-OCT. PR en-face maps were generated. Individual layer thicknesses and PR analysis was conducted across multiple zones, extending up to 8–10 mm in diameter. All eyes in the study had not undergone interventions, received topical medications, or had previous corneal disease history. Results Significant differences were found in spherical and cylindrical powers, keratometry, pachymetry, and biomechanical indices (all P < 0.01). Thickness profiles from PS-OCT showed significant differences in the 4–8 mm zones only. Bowman's layer thickness significantly differed only in the central 2 mm zone (P = 0.02). The median PR values showed marginal differences in the central 2 mm zone (P = 0.0565). Additionally, there were significant differences observed in the 2–4 mm and 4–6 mm zones (P = 0.0274 and P = 0.0456, respectively). KC eyes exhibited an atypical PR distribution and corneal thinning, while normal eyes maintained a uniform Bowman’s layer thickness and PR maps with larger areas of higher PR. Conclusion The study revealed distinctive PR distribution in thick corneas among healthy and KC groups. Using an ultrahigh-resolution PS-OCT the significance of Bowman's layer thickness in these groups was also emphasized. The study offered potential improvements in clinical diagnostics by enhancing our understanding of corneal structure and its altered function.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3