Peripapillary structural and microvascular alterations in early dysthyroid optic neuropathy

Author:

Wu Yufei,Yang Qiaoli,Ding Liujun,Tu Yunhai,Deng Xiaoyu,Yang Yan,Shen Meixiao,Lu Qinkang,Lu Fan,Chen Qi

Abstract

Abstract Background To explore the changes in blood supply and structure around the optic nerve head (ONH) in thyroid-associated ophthalmopathy (TAO) patients with suspected dysthyroid optic neuropathy (DON). Methods TAO patients [19 with DON; 24 non-DON (NDON); 20 with equivocal DON (EDON)], and 34 control subjects were examined. Optical coherence tomography angiography (OCTA) was used to obtain peripapillary retinal nerve fiber layer (p-RNFL) and vessel density parameters, including the ONH whole image vessel density (ONH-wiVD) and the radial peripapillary capillary vessel density (RPC-VD) in early DON. Results Although there were no differences in p-RNFL thickness among the groups, there were differences in the ONH-wiVD of each grid section and the RPC-VD in all areas (P < 0.01). Compared with healthy controls, the EDON eyes had significantly lower RPC-VDs in all aeras (P < 0.05).The peripapillary region was further divided into eight sectors, and the RPC-VD in the temporal upper, superior temporal, and temporal lower sectors in the EDON group were significantly lower than in the controls. The visual impairment was closely related to the loss of peripapillary capillary vessel density. Univariate correlation analysis showed that the ONH-wiVD and RPC-VD of the TAO groups were negatively correlated with the intraocular pressure (r = − 0.296, P = 0.006; r = − 0.258, P = 0.016 respectively). Conclusions EDON patients had significantly lower ONH-wiVD and RPC-VD than control subjects, and the temporal and upper VDs were more likely to be affected in the early stage of TAO. The combined use of spectral domain optical coherence tomography and OCTA technologies offer a new method for early diagnosis of suspected DON patients.

Funder

The Natural Science Foundation of Zhejiang Province

The Ningbo Major Science and Technology Task Project

The Ningbo Science and Technology Project

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,Health Professions (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3