Dynamic analysis of iris changes and a deep learning system for automated angle-closure classification based on AS-OCT videos

Author:

Hao Luoying,Hu YanORCID,Xu Yanwu,Fu Huazhu,Miao Hanpei,Zheng Ce,Liu Jiang

Abstract

Abstract Background To study the association between dynamic iris change and primary angle-closure disease (PACD) with anterior segment optical coherence tomography (AS-OCT) videos and develop an automated deep learning system for angle-closure screening as well as validate its performance. Methods A total of 369 AS-OCT videos (19,940 frames)—159 angle-closure subjects and 210 normal controls (two datasets using different AS-OCT capturing devices)—were included. The correlation between iris changes (pupil constriction) and PACD was analyzed based on dynamic clinical parameters (pupil diameter) under the guidance of a senior ophthalmologist. A temporal network was then developed to learn discriminative temporal features from the videos. The datasets were randomly split into training, and test sets and fivefold stratified cross-validation were used to evaluate the performance. Results For dynamic clinical parameter evaluation, the mean velocity of pupil constriction (VPC) was significantly lower in angle-closure eyes (0.470 mm/s) than in normal eyes (0.571 mm/s) (P < 0.001), as was the acceleration of pupil constriction (APC, 3.512 mm/s2vs. 5.256 mm/s2; P < 0.001). For our temporal network, the areas under the curve of the system using AS-OCT images, original AS-OCT videos, and aligned AS-OCT videos were 0.766 (95% CI: 0.610–0.923) vs. 0.820 (95% CI: 0.680–0.961) vs. 0.905 (95% CI: 0.802–1.000) (for Casia dataset) and 0.767 (95% CI: 0.620–0.914) vs. 0.837 (95% CI: 0.713–0.961) vs. 0.919 (95% CI: 0.831–1.000) (for Zeiss dataset). Conclusions The results showed, comparatively, that the iris of angle-closure eyes stretches less in response to illumination than in normal eyes. Furthermore, the dynamic feature of iris motion could assist in angle-closure classification.

Funder

the National Natural Science Foundation of China

The Science and Technology Innovation Committee of Shenzhen City

Guangdong Provincial Department of Education

Guangdong Basic and Applied Basic Research Foundation

Guangdong Provincial Key Laboratory

Hospital Funded Clinical Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine

Publisher

Springer Science and Business Media LLC

Subject

Ophthalmology,Health Professions (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3