Comparison of deep learning-assisted blinking analysis system and Lipiview interferometer in dry eye patients: a cross-sectional study

Author:

Ren Yueping,Wen Han,Bai Furong,Huang Binge,Wang Zhenzhen,Zhang Shuwen,Pu Yaojia,Le Zhenmin,Gong Xianhui,Wang Lei,Chen Wei,Zheng Qinxiang

Abstract

Abstract Background Abnormal blinking pattern is associated with ocular surface diseases. However, blink is difficult to analyze due to the rapid movement of eyelids. Deep learning machine (DLM) has been proposed as an optional tool for blinking analysis, but its clinical practicability still needs to be proven. Therefore, the study aims to compare the DLM-assisted Keratograph 5M (K5M) as a novel method with the currently available Lipiview in the clinic and assess whether blinking parameters can be applied in the diagnosis of dry eye disease (DED). Methods Thirty-five DED participants and 35 normal subjects were recruited in this cross-sectional study. DED questionnaire and ocular surface signs were evaluated. Blinking parameters including number of blinks, number of incomplete blinking (IB), and IB rate were collected from the blinking videos recorded by the K5M and Lipiview. Blinking parameters were individually collected from the DLM analyzed K5M videos and Lipiview generated results. The agreement and consistency of blinking parameters were compared between the two devices. The association of blinking parameters to DED symptoms and signs were evaluated via heatmap. Results In total, 140 eyes of 70 participants were included in this study. Lipiview presented a higher number of IB and IB rate than those from DLM-assisted K5M (P ≤ 0.006). DLM-assisted K5M captured significant differences in number of blinks, number of IB and IB rate between DED and normal subjects (P ≤ 0.035). In all three parameters, DLM-assisted K5M also showed a better consistency in repeated measurements than Lipiview with higher intraclass correlation coefficients (number of blinks: 0.841 versus 0.665; number of IB: 0.750 versus 0.564; IB rate: 0.633 versus 0.589). More correlations between blinking parameters and DED symptoms and signs were found by DLM-assisted K5M. Moreover, the receiver operating characteristic analysis showed the number of IB from K5M exhibiting the highest area under curve of 0.773. Conclusions DLM-assisted K5M is a useful tool to analyze blinking videos and detect abnormal blinking patterns, especially in distinguishing DED patients from normal subjects. Large sample investigations are therefore warranted to assess its clinical utility before implementation.

Funder

National Natural Science Foundation of China

Science and Technology Plan Project of Wenzhou, China

Foundation of Zhejiang Province Education Department

Zhejiang Provincial Medical and Health Science and Technology Plan Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3