Modeling of gonioscopic anterior chamber angle grades based on anterior segment optical coherence tomography

Author:

Dai Yingying,Zhang Shaodan,Shen Meixiao,Zhou Yuheng,Wang Mengyi,Ye Jie,Zhu DexiORCID

Abstract

Abstract Background To quantitatively assess anterior chamber angle (ACA) structure by anterior segment optical coherence tomography (AS-OCT) and develop a model to evaluate angle width as defined by gonioscopy. Methods The ACAs of each quadrant were evaluated by gonioscopy, classified by the Scheie grading system, and assigned into one of the three grades: small angle (SA), moderate angle (MA), and large angle (LA). The eyes were imaged by AS-OCT, and ACA structural parameters including angle opening distance at the scleral spur (AODSS) and at 750 μm anterior to the scleral spur (AOD750), trabecular-iris space area at 750 μm anterior to the scleral spur (TISA750), and a newly defined parameter “light intersection distance” (LID), were measured. The ACA structural data were used to construct an ordered logistic regression model for assignment of ACAs to one of the three angle grades. The validity of the model was then tested. Results A total of 169 quadrants from 53 subjects were included in the analysis, of which 111 quadrants were included in the modeling data and 58 in the testing data. In pairwise comparisons of SA, MA, and LA by ANOVA, the measured parameters were as follows: AOD750 (0.174 ± 0.060 vs. 0.249 ± 0.068 vs. 0.376 ± 0.114 mm; P < 0.001), TISA750 (0.075 ± 0.035 vs. 0.117 ± 0.036 vs. 0.181 ± 0.062 mm2; P < 0.001), and LID (− 0.300 ± 0.187 vs. -0.085 ± 0.170 vs. 0.122 ± 0.156 mm; P < 0.001). The ACA grading model based on LID showed a relatively high correction rate of 72.4%, and the model efficiency, calculated using the receiver operating characteristic, showed an area under the curve of 0.740. Weighted kappa statistics showed a good agreement for multiple ACA grades (0.772). Conclusions The AS-OCT-based multiple ACA grades model was demonstrated as a non-contact approach for ACA assessment with high speed and high spatial resolution, providing guidance for diagnosis of angle closure.

Funder

Natural Science Foundation of Zhejiang Province

Optometry Engineering Technology Development Project of Zhejiang Eye Hospital

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3