SUV39H1 regulates corneal epithelial wound healing via H3K9me3-mediated repression of p27

Author:

Yang Shuai,Chen Weiwei,Jin Shanshan,Luo Guangying,Jing Xia,Liu Qi,Reinach Peter S.,Qu Jia,Yan DongshengORCID

Abstract

Abstract Background Corneal epithelial wound healing (CEWH) is vital for maintaining the integrity and barrier function of the cornea. Although histone modifications mediating gene expression patterns is fundamental in some other tissues, it remains unclear whether these gene regulation patterns underlie CEWH. Suppressor of variegation 3-9 homolog 1 (SUV39H1) plays a vital role in mediating gene silencing via histone H3 trimethylation of lysine 9 (H3K9me3). This study aims to characterize the comprehensive signature of epigenetic modifiers and determine the role of SUV39H1 in CEWH. Methods NanoString nCounter technology was used to detect the differentially expressed epigenetic modifiers during CEWH. Bioinformatic analyses were performed to reveal their involvement in this process. After knockdown of SUV39H1 with siRNA transfection, we determined the function of SUV39H1 on cell proliferation and migration in human corneal epithelial cells (HCECs) via MTS, EdU, and wound-healing assay, respectively. Flow cytometry analysis further confirmed the effect of SUV39H1 on the cell cycle of HCECs. Loss-of-function assays for SUV39H1 with siRNA injection or chaetocin assessed the role of SUV39H1 on CEWH in vivo. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting characterized the expression of SUV39H1 and its target genes. Chromatin immunoprecipitation assay was used to evaluate the distributions of H3K9me3 marks at the promoters of SUV39H1 target genes. Results We first identified 92 differentially expressed epigenetic modifiers and revealed their involvement during CEWH. SUV39H1 was confirmed to be upregulated in response to corneal injury. Its downregulation significantly inhibited HCEC proliferation and retarded in vivo CEWH. Furthermore, knockdown of SUV39H1 upregulated the p27 expression level and reduced H3K9me3 marks at p27 promoter in HCECs. In addition, p27 was remarkably downregulated with elevated H3K9me3 marks at its promoter during in vivo CEWH. Conclusions SUV39H1 plays a critical role in regulating corneal epithelial cell proliferation via H3K9me3-mediated suppression of p27 during CEWH. Our findings suggest that epigenetic modifiers such as SUV39H1 can be potential therapeutic approaches to accelerate corneal repair.

Funder

the 973 Project from the Ministry of Science and Technology of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Science Foundation of Wenzhou Medical University

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3