Abstract
Abstract
Background
Youth use different forms of screen time (e.g., streaming, gaming) that may be related to body mass index (BMI). Screen time is non-independent from other behaviors, including physical activity and sleep duration. Statistical approaches such as isotemporal substitution or compositional data analysis (CoDA) can model associations between these non-independent behaviors and health outcomes. Few studies have examined different types of screen time, physical activity, and sleep duration simultaneously in relation to BMI.
Methods
Data were baseline (2017–2018) and one-year follow-up (2018–2019) from the Adolescent Brain Cognitive Development Study, a multi-site study of a nationally representative sample of U.S. youth (N = 10,544, mean [SE] baseline age = 9.9 [0.03] years, 48.9% female, 45.4% non-White). Participants reported daily minutes of screen time (streaming, gaming, socializing), physical activity, and sleep. Sex-stratified models estimated the association between baseline behaviors and follow-up BMI z-score, controlling for demographic characteristics, internalizing symptoms, and BMI z-score at baseline.
Results
In females, isotemporal substitution models estimated that replacing 30 min of socializing (β [95% CI] = -0.03 [-0.05, -0.002]), streaming (-0.03 [-0.05, -0.01]), or gaming (-0.03 [-0.06, -0.01]) with 30 min of physical activity was associated with a lower follow-up BMI z-score. In males, replacing 30 min of socializing (-0.03 [-0.05, -0.01]), streaming (-0.02 [-0.03, -0.01]), or gaming (-0.02 [-0.03, -0.01]) with 30 min of sleep was associated with a lower follow-up BMI z-score. In males, replacing 30 min of socializing with 30 min of gaming was associated with a lower follow-up BMI z-score (-0.01 [-0.03, -0.0001]). CoDA estimated that in males, a greater proportion of time spent in baseline socializing, relative to the remaining behaviors, was associated with a higher follow-up BMI z-score (0.05 [0.02, 0.08]). In females, no associations between screen time and BMI were observed using CoDA.
Conclusions
One-year longitudinal associations between screen time and BMI may depend on form of screen time, what behavior it replaces (physical activity or sleep), and participant sex. The alternative statistical approaches yielded somewhat different results. Experimental manipulation of screen time and investigation of biopsychosocial mechanisms underlying the observed sex differences will allow for causal inference and can inform interventions.
Publisher
Springer Science and Business Media LLC
Reference79 articles.
1. Stierman B, Afful J, Carroll MD, Chen T-C, Davy O, Fink S, et al. National health and nutrition examination survey 2017–March 2020 prepandemic data files development of files and prevalence estimates for selected health outcomes. 2021.
2. Rundle AG, Factor-Litvak P, Suglia SF, Susser ES, Kezios KL, Lovasi GS, et al. Tracking of obesity in childhood into adulthood: effects on body mass index and fat mass index at age 50. Child Obes. 2020;16(3):226–33.
3. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: Emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–35.
4. Piché M-E, Tchernof A, Després J-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126(11):1477–500.
5. Liang Y, Hou D, Zhao X, Wang L, Hu Y, Liu J, et al. Childhood obesity affects adult metabolic syndrome and diabetes. Endocrine. 2015;50(1):87–92.