Alterations in white matter integrity in Egyptian youth with smartphone dependence: does DTI have a role?

Author:

Reda Alaa MohamedORCID,Elsharkawy Ahmed,Kamel Mostafa Mamdouh,Hasby Sara Essam

Abstract

Abstract Background Smartphones provide various functions that facilitate our communication, organization, and entertainment in different situations. Diffusion tensor imaging (DTI) is a method measuring tissue microstructure as well as white matter integrity of the brain and detecting early changes. Several research studies recently aim to utilize conventional MRI for assessing brain structural alterations among smartphone users, but our study was aimed at identifying the DTI value while assessing white matter alterations in Egyptian youth with smartphone dependence. Results Our prospective case–control study involved fifty-three individuals with smart phone dependence (SPD group) as well as twenty-five volunteers who represented the control group. SPD individuals and controls were right-handed. The SPD group mean age exhibited 20.54 ± 1.56 years, while controls exhibited 26.8 ± 15.1 years. When utilizing smart phone addiction scale-short version, SPD group median total score exhibited 33. The diagnostic performance of fornix (fractional anisotropy) FA and external capsule fractional anisotropy (EC FA) regarding area under curve (AUC) exhibited significant increase as opposed to all other tested regions, with a sensitivity of 90.6% as well as a specificity of 96%. While regarding the mean diffusivity (MD), the greatest (AUC) was for EC (0.927, p < 0.001), in which the MD value = 0.825 was the cutoff value and able to diagnose the smart phone dependency with a sensitivity of 92.5% as well as a specificity of 76%. Conclusions Quantitative DTI parameters (FA, MD) in different white matter regions can diagnose and detect white matter changes in excessive smartphone users even when conventional MRI data are normal. This study demonstrates the recent noninvasive MRI technique value while revealing covered brain white matter alterations in Egyptian youth due to smartphone overuse.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3