The added value of using artificial intelligence in adult chest X-rays for nodules and masses detection in daily radiology practice

Author:

Farouk SuzanORCID,Osman Ahmed M.ORCID,Awadallah Shrouk M.ORCID,Abdelrahman Ahmed S.ORCID

Abstract

Abstract Background Pulmonary nodule detection in CXR is challenging. Recently, the use of artificial intelligence (AI) has been a major attraction. The current study aimed to evaluate the diagnostic performance of the AI in the detection of pulmonary nodules or masses on CXR compared to the radiologist’s interpretation and to assess its impact on the reporting process. The current study included 150 patients who had CXR interpreted by radiologists and by AI software. Results CT detected pulmonary nodules in 99 cases (66%) while the visual model of analysis, as well as AI, detected nodules among 92 cases (61.3%) compared to 93 (62%) cases detected by combined visual/AI model. A total of 216 nodules were detected by CT (64.4% solid and 31.5% GG). Only 188 nodules were detected by the AI while 170 nodules were detected by visual analysis. As per case classification or nodule analysis, the AI showed the highest area under curve (AUC) (0.890, 95% CI) and (0.875, 95% CI), respectively, followed by the combined visual/AI model. Regarding the nodules’ texture, the AI model’s sensitivity for solid nodules was 91.4% which was greater than the combined visual/AI and visual models alone, while in GG nodules, the combined visual/AI model’s sensitivity was higher than the AI and visual models. The probability score using the combined visual/AI model was significantly higher than using the visual model alone (P value = 0.001). Conclusions The use of the AI model in CXR interpretation regarding nodules and masses detection helps in more accurate decision-making and increases the diagnostic performance affecting the patient’s morbidity and mortality.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3