Low-dose CT radiomics features-based neural networks predict lymphoma types

Author:

Erturk HasanORCID,Eser Mehmet BilginORCID,Buz Yaşar AysenurORCID,Ayaz MuzafferORCID,Atalay BasakORCID,Tatoglu Mehmet TarıkORCID,Caymaz IsmailORCID

Abstract

Abstract Background Fluorodeoxyglucose positron emission tomography (PET)–computed tomography (CT) is preferred for pretreatment staging and treatment planning in patients with lymphoma. This study aims to train and validate the neural networks (NN) for predicting lymphoma types using low-dose CT radiomics. Results Few radiomics features were stable in intraclass correlation coefficient and coefficient of variation analysis (n = 119). High collinear ones with variance inflation factor were eliminated (n = 56). Twenty-four features were selected with the least absolute shrinkage and selection operator regression for network training. NN had 75.76% predictive accuracy in the validation set and has 0.73 (95% CI 0.55–0.91) area under the curve (AUC) to differentiate Hodgkin lymphoma from non-Hodgkin lymphoma. NN which was used to differentiate B-cell lymphoma from T-cell lymphoma had 78.79% predictive accuracy and has 0.81 (95% CI 0.63–0.99) AUC. Conclusions In this study, in which we used low-dose CT images of PET–CT scans, predictions of the neural network were near acceptable lower bound for Hodgkin and non-Hodgkin lymphoma discrimination, and B-cell and T-cell lymphoma differentiation.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3