Abstract
Abstract
Background
Central nervous system (CNS) anomalies are the most commonly diagnosed abnormalities of all fetal malformations and are usually primarily discovered on routine prenatal ultrasonography (US). Fetal magnetic resonance imaging (MRI) is a non-invasive technology with high soft tissue contrast that is documented to increase the diagnostic accuracy for detection of fetal brain anomalies.
The aim of our study is to analyze the value of adding magnetic resonance imaging (MRI) of the fetal brain to antenatal ultrasound in the diagnosis of fetal central nervous system (CNS) anomalies.
Results
We diagnosed various CNS anomalies including twelve cases with infra- and supra-tentorial arachnoid cysts, six cases had Dandy-Walker malformation (DWM) and its variants, 1 case with mega cisterna magna, 2 cases of holoprosencephaly, 1 case of hydranencephaly, 2 cases with supratentorial hydrocephalus, 1 case of craniopharyngioma, 6 cases with corpus callosum (CC) agenesis, 1 case of extradural hematoma, and 8 cases with Meckel-Gruber syndrome (MGS). MRI diagnosis confirmed the ultrasound finding, without additional information in 23 cases (57.5%%), added an extra finding in 11 cases (27.5%), differentiated between 2 pathologies in 3 cases (7.5%), and changed the diagnosis in 3 cases (7.5 %).
The 40 pregnancies resulted in 27 births (67.5%), 2 died directly after birth (5%), 7 terminations (17.5%), and 4 intrauterine fetal deaths (IUFD) (10 %).
Conclusion
Ultrasound is the gold standard imaging modality for anomaly scan in the second and third trimesters; however, MRI of the fetal brain might be a clinically valuable complement especially when ultrasound examination is inconclusive due to maternal obesity, severe oligohydramnios, or in complicated cases with unclear diagnosis.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference18 articles.
1. Onkar D., Onkar P., and Mitra K., “Evaluation of fetal central nervous system anomalies by ultrasound and its anatomical correlation,” J Clin Diagn Res,(2014) vol. 8, no. 6, pp. AC05–AC07, 2014.
2. Goergen SK, Alibrahim E, Govender N., . Stanislavsky A. and Abel C. “Diagnostic assessment of foetal brain malformations with intra-uterine MRI versus perinatal post- mortem MRI” Neuroradiology (2019) 61:921–934.
3. Eros FR, Simonyi A, Tidrenczel Z, Szabo I, Rigo J Jr, Beke A (2018) Efficacy of prenatal ultrasound in craniospinal malformations according to fetopathological and postnatal neonatological, pathological results. Fetal Pediatr Pathol 37(3):166–176
4. Jarvis D, Mooney C, Cohen J, Papaioannou D, Bradburn M, Sutton A, Griffiths PD (2017) A systematic review and meta-analysis to determine the contribution of MR imaging to the diagnosis of foetal brain abnormalities in utero. Eur Radiol 27(6):2367–2380
5. Griffiths PD, Bradburn M, Campbell MJ, Cooper CL, Graham R, Jarvis D, Kilby MD, Mason G, Mooney C, Robson SC, Wailoo A (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389:538–546
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献