Diffusion tensor imaging of dorsal stream language areas in patients with post-stroke aphasia

Author:

Elmongui Azza,AbdelRazek Ahmed,Abou-Elsaad Tamer,Belal Tamer,Ibrahim Noha,Alnaghy EmanORCID

Abstract

Abstract Background Aphasia complicating stroke occurs due to language deficits that decrease communication abilities and functional independence. Our study aims to assess fractional anisotropy (FA) and mean diffusivity (MD) parameters of diffusion tensor imaging (DTI) of the dorsal stream language areas in patients with post-stroke aphasia. It was conducted on 27 patients with post-stroke aphasia and 27 age- and sex-matched controls who underwent DTI of the brain. FA and MD values of Broca's area (BA), Wernick's area (WA), superior longitudinal fasciculus (SLF), and arcuate fasciculus (AF), and number of tract fibers (TF) of AF and SLF were calculated. Results were correlated with National Institutes of Health Stroke Scale (NIHSS), Arabic version of Comprehensive Aphasia Test (Arabic CAT), and Mansoura Arabic Screening Aphasia Test (MASAT). Results FA of AF and SLF in patients was significantly lower (P = 0.001) than controls. MD of AF and SLF in patients was significantly higher (P = 0.001) than controls. The mean volume TF of AF and SLF in patients was significantly (P = 0.001) lower than the mean volume in controls for AF and SLF. FA cutoff for AF was 0.34 and for SLF, it was 0.35 with sensitivity, specificity, and accuracy (85.2%, 62.1%, 73.2%) for AF, (74.1%, 69%, 71.4%) for SLF, respectively. MD cutoff value for AF was 0.87, and 0.84 for SLF with sensitivity, specificity, and accuracy (63%, 72.4%, 67.8%) for AF, (81.5%, 79.3%, 80.4%) for SLF, respectively. Cutoff TF of AF was 1728 and for SLF it was 601 with sensitivity, specificity, and accuracy (88.9%, 72.4%, 80.4%) for AF and (85.2%, 85.2%, 78.6%) for SLF, respectively. Conclusions DTI is a non-invasive promising method that can be used to assess language areas in patients with post-stroke aphasia.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3