The integration of artificial intelligence with contrast-enhanced mammogram in the work up of suspicious breast lesions: what do you expect?

Author:

Mansour SaharORCID,Azzam Heba,El-Assaly Hany

Abstract

Abstract Background The enhancement overlaps at contrast-enhanced mammogram (CEM) between benign and malignant breast abnormalities presents a high probability of false-positive lesions and subjects females’ candidate for screening and diagnostic mammograms to unnecessary biopsy and anxiety. The current work aimed to evaluate the ability of mammograms scanned by artificial intelligence (AI) to enhance the specificity of CEM and support the probability of malignancy in suspicious and malignant looking breast lesions. Methods The study included 1524 breast lesions. The AI algorithm applied to the initial mammograms and generated location information for lesions. AI scoring suggested the probability of malignancy ranged from 100% (definite cancers) and < 10% (definite non-cancer) and correlated with recombinant contrast enhanced images. Results The malignant proved abnormalities were 1165 (76.5%), and the benign ones were 359 (26.5%). BI-RADS 4 category was assigned in 704 lesions (46.2%) divided into 400 malignant (400/704, 56.8%) and 304 benign (304/704, 43.2%). BI-RADS 5 category presented by 820 lesions (53.8%), 765 of them were malignant (765/820, 93.3%) and 55 were benign (55/820, 6.7%). The sensitivity of digital mammogram whether supported by AI (93.9%) or contrast media (94.4%) was significantly increased to 97.2% (p < 0.001) when supported by both methods. Improvement of the negative predictive value (from 80.6% and 79.6% to 89.8%, p < 0.05) and the accuracy (from 91.1 and 88.8 to 94.0%, p < 0.01) was detected. Conclusions Contrast-enhanced mammogram helps in specification of different breast lesions in view of patterns of contrast uptake and morphology descriptors, yet with some overlap. The use of artificial intelligence applied on digital mammogram reduced the interpretational variability and limited attempts of re-biopsies of suspicious looking breast lesions assessed by contrast-enhanced mammograms.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3