Diffusion tensor magnetic resonance imaging in differentiation of breast lesions

Author:

Amin Esraa Saleh,Elsharawy Fatma Anas,Mlees Mohamed Ali,EL-Saeid Haytham Haroun,Dawoud Mohammed Fathy

Abstract

Abstract Background Diffusion tensor imaging (DTI) is a novel approach which uses extra gradients to quantify diffusion in several directions (at least six). The purpose of this research was to determine the role of diffusion tensor magnetic resonance imaging in breast lesion differentiation. Results Apparent diffusion coefficient (ADC) values were significantly lower in malignant than benign lesions, with a cut-off value of 1.21 × 10−3 mm2/s, this gives a sensitivity of 88.46%, specificity 87.50% and accuracy 86.7%. Values of fractional anisotropy (FA) were higher significantly in malignant compared to benign lesions with a 0.15 cut-off value, has a 95.83% sensitivity, 96.15% specificity, and 95.6%, accuracy. Values of RA were significantly higher in malignant (0.180 ± 0.068) compared to benign lesions, with 0.13 cut-off value. Sensitivity, specificity, and accuracy were, respectively, 91.69%, 92.31%, and 90.2%. Values of λ1 were significantly lower in malignant (1.4 ± 0.453 × 10−3 mm2/s) than in benign (2.19 ± 0.659 × 10−3 mm2/s) lesions with a cut-off value of 1.71 × 10−3 mm2/s. Sensitivity and specificity were, respectively, 95.83 and 96.15%. The combined evaluation by (dynamic contrast enhancement) Sensitivity improved to 100% with DCE and DTI readings, while specificity remained at 95.6%. Conclusions DTI breast imaging is a noninvasive procedure which demonstrated a high potential utility for cancer detection and serving as a standalone technique or in conjunction with DCE-MRI, the discriminating values of FA, λ1 and λ1–λ3 were high. Their measurements were strongly associated with identification breast malignancy and combined evaluation by DTI parameters and DCE-MRI DTI enhanced the sensitivity, lowered the rate of false-negatives, and completely improved the accuracy of breast lesions differential diagnosis.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3