Glioma grading using an optimized T1-weighted dynamic contrast-enhanced magnetic resonance imaging paradigm

Author:

Abdi Aza IsmailORCID

Abstract

Abstract Background Glioma grading is a critical procedure for selecting the most effective treatment policy. Biopsy result is the gold standard method for glioma grading, but inherent sampling errors in the biopsy procedure could lead to tumor misclassification. Aim This study evaluated grading performances of a more comprehensive collection of the physiological indices quantified using an optimized dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) paradigm for glioma grading. Methods Thirty-five patients with glioma underwent DCE-MR imaging to evaluate the grading performances of DCE-MRI-derived physiological indices. The statistical differences in the physiological indices between the different grades of gliomas were studied, and the grading performances of these parameters were evaluated using the leave-one-out cross-validation method. Results There were significant statistical differences in DCE-MRI-derived physiological indices between the different grades of gliomas. The mean rCBVs for grade II (low-grade glioma, LGG), grade III, grade IV, and high-grade (HGG) gliomas were 2.03 ± 0.78, 3.61 ± 1.64, 7.14 ± 3.19, and 5.28 ± 3.02, respectively. The mean rCBFs of 1.94 ± 0.97, 2.67 ± 0.96, 4.57 ± 1.77, and 3.57 ± 1.68 were, respectively, quantified for grade II (LGG), grade III, grade IV, and high-grade gliomas. The leave-one-out cross-validation method indicates that the grades of glioma tumors could be determined based on a specific threshold for each physiological index; for example, the optimal cutoff values for rCBF, rCBV, Ktrans, Kep, and Vp indices to distinguish between HGGs and LGGs were 2.11, 2.80, 0.025 mL/g min, 0.29 min−1, and 0.065 mL/g, respectively. Conclusions From the results, it could be concluded that glioma grades could be determined using DCE-MRI-derived physiological indices with an acceptable agreement with histopathological results.

Funder

Erbil Polytechnic University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3