The added value of relative amide proton transfer (rAPT) to advanced multiparametric MR imaging for brain glioma characterization

Author:

Mostafa Mai A.ORCID,Abo-Elhoda Pasant M.,Abdelrahman Ahmed S.,Elzoghby Ahmed M.,Elmahdy Manal M.,Abbas Yasser A.

Abstract

Abstract Background Differentiation between the grades of brain gliomas is a crucial step in the management of patients. The gold standard technique for grading is biopsy but MR imaging may play a more substantial role as a non-invasive method by using promising molecular sequences. Our purpose was to assess the added value of the relative amide proton transfer signal [rAPT] to advanced multiparametric MRI protocol. Methods We enrolled a pathologically confirmed 102 patients with low-grade glioma [n = 38] and high-grade glioma [n = 64] who underwent advanced multiparametric MRI protocol on the same scanner. The protocol included anatomic, diffusion, MRS, and perfusion sequences. The newly added sequence was Amide proton transfer. The rAPT values of all lesions were investigated by two neuroradiologists to assess the inter-rater agreement of using interclass correlation coefficient [ICC]. HGGs demonstrated significantly higher mean values of relative cerebral blood volume (rCBV), choline to creatine ratio (Cho/cr), and rAPT with lower Apparent diffusion coefficient (ADC) values compared to LGGs. ROC analyses revealed medium to high diagnostic performance with an AUC of 0.941 for rAPT, 0.907 for mean ADC, and 0.906 for rCBV. Discriminant function analysis of two models, the first one included mean ADC, rCBV, and Cho/Cr, while in the second Model, we added rAPT to them. Model two demonstrated higher accuracy and a significant difference in the AUC after adding the rAPT. The inter-rater agreement was reasonable (ICC 0.61). Conclusions rAPT adds significant value to multiparametric MRI for distinguishing LGG from HGG.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3