Abstract
Abstract
Background
Mineralizing microangiopathy represents one of the delayed complications of radiotherapy and chemotherapy. We reviewed clinical and radiological data of pediatric cancer patients who presented with mineralizing microangiopathy. This is a retrospective analysis of the medical records of 37 cancer children treated with chemoradiotherapy presented with imaging criteria suspected of mineralizing microangiopathy admitted to our hospital during the period 2015–2020. The CT was reviewed for distribution of calcification and MRI for signal criteria.
This study aims to raise awareness among radiologists about radiological features of mineralizing microangiopathy during the sequential routine follow-up brain scans of pediatric cancer patients who received chemo, radio, or combined chemoradiotherapy and to identify changes as a long-term delayed complication of therapy and avoid misdiagnosis.
Results
Thirty-seven pediatric cancer patients (17 female and 20 males, aged 1.5–18 years) who had mineralizing microangiopathy were thoroughly investigated. Most of them (32 patients) had brain tumors and 5 patients had leukemia. Cranial radiotherapy and systemic chemotherapy were given to 33 patients, while nine patients received intrathecal chemotherapy. The interval needed to develop mineralizing microangiopathy ranged from 1 to 10 years after the end of treatment. CT detected calcification in the basal ganglia, being the most common location (32 cases), followed by cerebral gray–white matter interface in 26 patients, cerebellum (18), brain stem (13), thalamus (5), and caudate nucleus (4), while dural calcifications were found in only one patient. MRI was considered “positive” when T1 hyperintensity was noted in the anatomical location of CT detected calcification; it was positive in 29 cases.
Conclusion
Mineralizing microangiopathy is one of the delayed complications of chemoradiotherapy among pediatric cancer patients. The awareness of its radiological criteria is essential to avoid misdiagnosis. Early detection can alert pediatric oncologists to monitor neurotoxicity and help prevent long-term neurological sequels.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献