The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution

Author:

Klingler Martin,Bucher Gregor

Abstract

AbstractThe red flour beetle Tribolium castaneum has emerged as an important insect model system for a variety of topics. With respect to studying gene function, it is second only to the vinegar fly D. melanogaster. The RNAi response in T. castaneum is exceptionally strong and systemic, and it appears to target all cell types and processes. Uniquely for emerging model organisms, T. castaneum offers the opportunity of performing time- and cost-efficient large-scale RNAi screening, based on commercially available dsRNAs targeting all genes, which are simply injected into the body cavity. Well established transgenic and genome editing approaches are met by ease of husbandry and a relatively short generation time. Consequently, a number of transgenic tools like UAS/Gal4, Cre/Lox, imaging lines and enhancer trap lines are already available. T. castaneum has been a genetic experimental system for decades and now has become a workhorse for molecular and reverse genetics as well as in vivo imaging. Many aspects of development and general biology are more insect-typical in this beetle compared to D. melanogaster. Thus, studying beetle orthologs of well-described fly genes has allowed macro-evolutionary comparisons in developmental processes such as axis formation, body segmentation, and appendage, head and brain development. Transgenic approaches have opened new ways for in vivo imaging. Moreover, this emerging model system is the first choice for research on processes that are not represented in the fly, or are difficult to study there, e.g. extraembryonic tissues, cryptonephridial organs, stink gland function, or dsRNA-based pesticides.

Funder

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Developmental Biology,Genetics,Ecology, Evolution, Behavior and Systematics

Reference125 articles.

1. Pointer MD, Gage MJG, Spurgin LG. Tribolium beetles as a model system in evolution and ecology. Heredity. 2021. https://doi.org/10.1038/s41437-021-00420-1.

2. Chafino S, Ureña E, Casanova J, Casacuberta E, Franch-Marro X, Martín D. Upregulation of E93 gene expression acts as the trigger for metamorphosis independently of the threshold Size in the Beetle Tribolium castaneum. Cell Rep. 2019;27:1039-1049.e2.

3. Sokoloff A. The biology of Tribolium: with special emphasis on genetic aspects. Oxford: Clarendon Press; 1974.

4. Sokoloff A. The biology of Tribolium: with special emphasis on genetic aspects. Oxford: Clarendon Press; 1972. p. 1972.

5. Sokoloff A. The biology of Tribolium: with special emphasis on genetic aspects. Oxford: Clarendon Press; 1977.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3