Artificial intelligence in bone age assessment: accuracy and efficiency of a novel fully automated algorithm compared to the Greulich-Pyle method

Author:

Booz Christian,Yel Ibrahim,Wichmann Julian L.,Boettger Sabine,Al Kamali Ahmed,Albrecht Moritz H.ORCID,Martin Simon S.,Lenga Lukas,Huizinga Nicole A.,D’Angelo Tommaso,Cavallaro Marco,Vogl Thomas J.,Bodelle Boris

Abstract

Abstract Background Bone age (BA) assessment performed by artificial intelligence (AI) is of growing interest due to improved accuracy, precision and time efficiency in daily routine. The aim of this study was to investigate the accuracy and efficiency of a novel AI software version for automated BA assessment in comparison to the Greulich-Pyle method. Methods Radiographs of 514 patients were analysed in this retrospective study. Total BA was assessed independently by three blinded radiologists applying the GP method and by the AI software. Overall and gender-specific BA assessment results, as well as reading times of both approaches, were compared, while the reference BA was defined by two blinded experienced paediatric radiologists in consensus by application of the Greulich-Pyle method. Results Mean absolute deviation (MAD) and root mean square deviation (RSMD) were significantly lower between AI-derived BA and reference BA (MAD 0.34 years, RSMD 0.38 years) than between reader-calculated BA and reference BA (MAD 0.79 years, RSMD 0.89 years; p < 0.001). The correlation between AI-derived BA and reference BA (r = 0.99) was significantly higher than between reader-calculated BA and reference BA (r = 0.90; p < 0.001). No statistical difference was found in reader agreement and correlation analyses regarding gender (p = 0.241). Mean reading times were reduced by 87% using the AI system. Conclusions A novel AI software enabled highly accurate automated BA assessment. It may improve efficiency in clinical routine by reducing reading times without compromising the accuracy compared with the Greulich-Pyle method.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3