Artificial intelligence for assessment of vascular involvement and tumor resectability on CT in patients with pancreatic cancer

Author:

Bereska Jacqueline I.ORCID,Janssen Boris V.,Nio C. Yung,Kop Marnix P. M.,Kazemier Geert,Busch Olivier R.,Struik Femke,Marquering Henk A.,Stoker Jaap,Besselink Marc G.,Verpalen Inez M.,

Abstract

Abstract Objective This study aimed to develop and evaluate an automatic model using artificial intelligence (AI) for quantifying vascular involvement and classifying tumor resectability stage in patients with pancreatic ductal adenocarcinoma (PDAC), primarily to support radiologists in referral centers. Resectability of PDAC is determined by the degree of vascular involvement on computed tomography scans (CTs), which is associated with considerable inter-observer variability. Methods We developed a semisupervised machine learning segmentation model to segment the PDAC and surrounding vasculature using 613 CTs of 467 patients with pancreatic tumors and 50 control patients. After segmenting the relevant structures, our model quantifies vascular involvement by measuring the degree of the vessel wall that is in contact with the tumor using AI-segmented CTs. Based on these measurements, the model classifies the resectability stage using the Dutch Pancreatic Cancer Group criteria as either resectable, borderline resectable, or locally advanced (LA). Results We evaluated the performance of the model using a test set containing 60 CTs from 60 patients, consisting of 20 resectable, 20 borderline resectable, and 20 locally advanced cases, by comparing the automated analysis obtained from the model to expert visual vascular involvement assessments. The model concurred with the radiologists on 227/300 (76%) vessels for determining vascular involvement. The model’s resectability classification agreed with the radiologists on 17/20 (85%) resectable, 16/20 (80%) for borderline resectable, and 15/20 (75%) for locally advanced cases. Conclusions This study demonstrates that an AI model may allow automatic quantification of vascular involvement and classification of resectability for PDAC. Relevance statement This AI model enables automated vascular involvement quantification and resectability classification for pancreatic cancer, aiding radiologists in treatment decisions, and potentially improving patient outcomes. Key points • High inter-observer variability exists in determining vascular involvement and resectability for PDAC. • Artificial intelligence accurately quantifies vascular involvement and classifies resectability for PDAC. • Artificial intelligence can aid radiologists by automating vascular involvement and resectability assessments. Graphical Abstract

Funder

Surf

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3