Development and implementation of an ultralow-dose CT protocol for the assessment of cerebrospinal shunts in adult hydrocephalus

Author:

Ryan David J.ORCID,Kavanagh Richard G.,Joyce Stella,O’Callaghan Maher Mika,Moore Niamh,McMahon Aisling,Hussey Deirdre,O’Sullivan Michael G. J.,Wyse Gerald,Fanning Noel,O’Connor Owen J.,Maher Michael M.

Abstract

Abstract Background Cerebrospinal fluid shunts in the treatment of hydrocephalus, although associated with clinical benefit, have a high failure rate with repeat computed tomography (CT) imaging resulting in a substantial cumulative radiation dose. Therefore, we sought to develop a whole-body ultralow-dose (ULD) CT protocol for the investigation of shunt malfunction and compare it with the reference standard, plain radiographic shunt series (PRSS). Methods Following ethical approval, using an anthropomorphic phantom and a human cadaveric ventriculoperitoneal shunt model, a whole-body ULD-CT protocol incorporating two iterative reconstruction (IR) algorithms, pure IR and hybrid IR, including 60% filtered back projection and 40% IR was evaluated in 18 adult patients post new shunt implantation or where shunt malfunction was suspected. Effective dose (ED) and image quality were analysed. Results ULD-CT permitted a 36% radiation dose reduction (median ED 0.16 mSv, range 0.07–0.17, versus 0.25 mSv (0.06–1.69 mSv) for PRSS (p = 0.002). Shunt visualisation in the thoracoabdominal cavities was improved with ULD-CT with pure IR (p = 0.004 and p = 0.031, respectively) and, in contrast to PRSS, permitted visualisation of the entire shunt course (p < 0.001), the distal shunt entry point and location of the shunt tip in all cases. For shunt complications, ULD-CT had a perfect specificity. False positives (3/22, 13.6%) were observed with PRSS. Conclusions At a significantly reduced radiation dose, whole body ULD-CT with pure IR demonstrated diagnostic superiority over PRSS in the evaluation of cerebrospinal fluid shunt malfunction.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3